hydrogen ion
Recently Published Documents


TOTAL DOCUMENTS

3807
(FIVE YEARS 124)

H-INDEX

88
(FIVE YEARS 5)

2022 ◽  
Vol 71 (1) ◽  
pp. 016102-016102
Author(s):  
Li Ran-Ran ◽  
◽  
Zhang Yi-Fan ◽  
Yin Yu-Peng ◽  
Watanabe Hideo ◽  
...  

2021 ◽  
Vol 62 (1) ◽  
pp. 016004
Author(s):  
S. Kamio ◽  
K. Saito ◽  
R. Seki ◽  
H. Kasahara ◽  
M. Kanda ◽  
...  

Abstract The characteristics of ion cyclotron range of frequencies (ICRF) minority ion heating with a hydrogen minority and deuterium majority plasma were studied by ICRF modulation injection experiments in the Large Helical Device (LHD). In recent experiments with deuterium plasma, no significant increase in the neutron emission rate due to ICRF second harmonic deuteron heating was observed. Therefore, in this study, the neutron emission rate was used to refer to the information regarding the thermal ion component. Like the results of the observations of the heating efficiencies at various minority proton ratios, the experimental results showed good agreement with the simple model simulation of ICRF wave absorption. During these experiments, the accelerated minority hydrogen ions were observed by neutral particle analyzers. The counting rates of the energetic particles were higher in the lines of sight passing through the helical ripple than across the magnetic axis, and the counting rate decreased as the minority hydrogen ion ratio increased. The dependence of the minority hydrogen ion ratio on the density of the energetic ions was consistent with the experimentally observed heating efficiencies and simulations. The heating efficiency of ICRF minority ion heating could be well explained by simple model simulation in the LHD deuterium experiment.


Author(s):  
A.N. Chernov ◽  
◽  
D.M. Afordoanyi ◽  
Sh.Z. Validov ◽  
◽  
...  

According to the results of the conducted studies of the fraction of activated zeolite from the plant of JSC "Volga Region Zeolites" of the Republic of Tatarstan with a size of 0.2 mm, it was found that the pH of the zeolite solution in dilution 1:40 was 10. At the same time, this value is maintained for 30 minutes. At the next dilution of 1:50, the hydrogen ion index decreased and was less than 10. The pH of the zeolite solution from the activated zeolite fraction with a size of 0.2 mm in dilutions of 1:30, 1:40 and 1:50 were 10.05, 10.03 and 9.85, respectively. However, 10 days after the preparation of the zeolite solution, the hydrogen ion index decreased and amounted to 9.96, 9.83 and 9.77. The addition of a zeolite solution at a dilution of 1:40 to nutrient agar reduced the germination of S. Aureus culture by 1.5 times, which opens up prospects for application in practical veterinary medicine. The work was carried out within the framework of GZ No. FMEG-2021-0003 registration number: 121021600147-1 and AAAA-A18-118031390148-1. The research will continue


2021 ◽  
Vol 399 ◽  
pp. 139331
Author(s):  
Huizheng Si ◽  
Chong Han ◽  
Yangbo Cui ◽  
Shangbin Sang ◽  
Kaiyu Liu ◽  
...  

2021 ◽  
Vol 92 (12) ◽  
pp. 123510
Author(s):  
D. Wünderlich ◽  
S. Briefi ◽  
R. Friedl ◽  
U. Fantz

2021 ◽  
Author(s):  
Liushun Wang ◽  
Dong Li ◽  
Yulan Zhou ◽  
Shaohua Fu ◽  
Yuehua Peng ◽  
...  

Abstract The transport and storage of ions within solid state structures is a fundamental limitation for fabricate more advanced electrochemical energy storage, memristor, and electrochromic devices. Crystallographic shear structure can be induced in the tungsten bronze structures composed of corner-sharing WO6 octahedra by the addition of edge-sharing NbO6 octahedra, which might provide more storage sites and more convenient transport channels for external ions such as hydrogen ions and alkali metal ions. Here, we show that Nb2O5·15WO3 nanowires with long length-diameter ratio, smooth surface, and uniform diameter have been successfully synthesized by a simple hydrothermal method. The Nb2O5·15WO3 nanowires do exhibit more advantages over h-WO3 nanowires in electrochemical hydrogen ion storage such as smaller polarization, larger capacity(71 mAh/g, at 10C, 1C = 100 mA/g), better cycle performance (remain at 99% of the initial capacity after 200 cycles at 100C) and faster H+ diffusion kinetics. Therefore, complex niobium tungsten oxide nanowires might offer great promise for the next generation of hydrogen ion batteries.


2021 ◽  
Author(s):  
◽  
Peter Osvath

<p>The preparation of a range of fully saturated, unsubstituted pentaazamacrocycles is described. The macrocycles vary in ring size from fifteen to twenty members, and comprise every possible arrangement of dimethylene and trimethylene linkages between five nitroqens in a monocyclic arrangement. A new linear homologue of tetraethylene pentamine with trimethylene linkages between nitrogens is also reported. The copper(II) and nickel(II) complexes of these amines have been prepared; the conductivity and spectral properties have been determined in order to investigate their stereochemistry. The nickel(II) complexes of the two largest macrocycles appear to be five-coordinate both in the solid state and in solution. The remainder of the complexes are either five-coordinate (as the perchlorate salts in the solid state or in non-coordinating solvents) or six-coordinate (with a coordinated nitrate). Cobalt(III) complexes of the fifteen to eighteen membered macrocycles have been prepared with a variety of ligands occupying the sixth coordination site. Ligand field parameters have been derived from the electronic spectra of the complexes. The stereochemistry of the complexes and their behaviour on ligand substitution have been investigated principally by 13C n.m.r. Only a few of the numerous possible isomers of each species were formed. The structures of [Co(1, 4, 7, 10, 14-pentaazacycloheptadecane) Cl]Br0.33 Cl1.67. H2O and [Co(1, 4, 7, 11, 15-pentaazacyclooctadecane)Br]Br2, which were determined by single-crystal x-ray diffraction studies, are described. The spontaneous aquation rates of the bromo complexes have been investigated semi-quantitatively, and found to span many orders of magnitude. The most labile bromo complex [Co(1, 4, 8, 11, 15-pentaazacyclooctadecane)Br]Br2 spontaneously aquates in a matter of seconds at room temperature. The increasing strain and steric crowding caused by successive replacement of five-membered chelate rings by six-membered chelate rings, or by simply altering the sequence of five- and six-membered chelate rings is manifested in a progressive increase in the instability of the complexes. In the case of the nineteen- and twenty-membered macrocycles, this crowding and strain results in the formation of stable five-coordinate cobalt(II) complexes; for these ligands, no stable complexes were formed with the smaller cobalt(III) cation. The acid-dissociation kinetics of the copper(II) complexes have been examined in nitric acid at 298 K. A variable temperature study has also been performed on the complex of l, 4, 7, 10, 14-pentaazacycloheptadecane in order to determine the activation parameters. The complexes are labile by comparison with most tetraazamacrocyclic complexes. The dissociation reactions are first-order in complex concentration, but the acid-dependence varies. The observed rate constant is second-order in hydrogen ion concentration for the complex of 1, 4, 7, 10, 13-pentaazacyclopentadecane, first-order in hydrogen ion concentration for 1, 4, 7, 10, 14-pentaazacycloheptadecane and takes the form kobs = a[H+]2/(l+b[H+]2) for the complex of 1, 4, 7, 10, 13-pentaazacyclohexadecane. For the remainder of the complexes, the observed rate constant takes the form kobs = (c[H+] + d[H+]2)/(e + [H+]). Possible mechanisms that are consistent with the above behaviour are presented.</p>


2021 ◽  
Author(s):  
◽  
Peter Osvath

<p>The preparation of a range of fully saturated, unsubstituted pentaazamacrocycles is described. The macrocycles vary in ring size from fifteen to twenty members, and comprise every possible arrangement of dimethylene and trimethylene linkages between five nitroqens in a monocyclic arrangement. A new linear homologue of tetraethylene pentamine with trimethylene linkages between nitrogens is also reported. The copper(II) and nickel(II) complexes of these amines have been prepared; the conductivity and spectral properties have been determined in order to investigate their stereochemistry. The nickel(II) complexes of the two largest macrocycles appear to be five-coordinate both in the solid state and in solution. The remainder of the complexes are either five-coordinate (as the perchlorate salts in the solid state or in non-coordinating solvents) or six-coordinate (with a coordinated nitrate). Cobalt(III) complexes of the fifteen to eighteen membered macrocycles have been prepared with a variety of ligands occupying the sixth coordination site. Ligand field parameters have been derived from the electronic spectra of the complexes. The stereochemistry of the complexes and their behaviour on ligand substitution have been investigated principally by 13C n.m.r. Only a few of the numerous possible isomers of each species were formed. The structures of [Co(1, 4, 7, 10, 14-pentaazacycloheptadecane) Cl]Br0.33 Cl1.67. H2O and [Co(1, 4, 7, 11, 15-pentaazacyclooctadecane)Br]Br2, which were determined by single-crystal x-ray diffraction studies, are described. The spontaneous aquation rates of the bromo complexes have been investigated semi-quantitatively, and found to span many orders of magnitude. The most labile bromo complex [Co(1, 4, 8, 11, 15-pentaazacyclooctadecane)Br]Br2 spontaneously aquates in a matter of seconds at room temperature. The increasing strain and steric crowding caused by successive replacement of five-membered chelate rings by six-membered chelate rings, or by simply altering the sequence of five- and six-membered chelate rings is manifested in a progressive increase in the instability of the complexes. In the case of the nineteen- and twenty-membered macrocycles, this crowding and strain results in the formation of stable five-coordinate cobalt(II) complexes; for these ligands, no stable complexes were formed with the smaller cobalt(III) cation. The acid-dissociation kinetics of the copper(II) complexes have been examined in nitric acid at 298 K. A variable temperature study has also been performed on the complex of l, 4, 7, 10, 14-pentaazacycloheptadecane in order to determine the activation parameters. The complexes are labile by comparison with most tetraazamacrocyclic complexes. The dissociation reactions are first-order in complex concentration, but the acid-dependence varies. The observed rate constant is second-order in hydrogen ion concentration for the complex of 1, 4, 7, 10, 13-pentaazacyclopentadecane, first-order in hydrogen ion concentration for 1, 4, 7, 10, 14-pentaazacycloheptadecane and takes the form kobs = a[H+]2/(l+b[H+]2) for the complex of 1, 4, 7, 10, 13-pentaazacyclohexadecane. For the remainder of the complexes, the observed rate constant takes the form kobs = (c[H+] + d[H+]2)/(e + [H+]). Possible mechanisms that are consistent with the above behaviour are presented.</p>


Author(s):  
Yunqiu Cui ◽  
Hongyu Fan ◽  
Chunjie Niu ◽  
Weifeng Liu ◽  
Zi-Lu Zhao ◽  
...  

Abstract Neutral beam injection (NBI) heating is a significant auxiliary heating method used in Tokamak fusion devices. The material of faraday shield (FS) and accelerator grids in the NBI inductively coupled plasma (ICP) source can be damaged during operation by the high-density hydrogen plasma irradiation, and thus affecting the stability of the NBI system. In this paper, a series of hydrogen plasma exposure experiments are performed on oxygen-free copper (OFC) specimens at 400-850 K with ion energy of 20-200 eV and irradiation fluence up to 1.0×1025 /m2. Meanwhile, the rate equation model is adopted for numerical simulation of the bubble growth and hydrogen retention. The influence of OFC surface temperature, hydrogen ion energy and fluence on OFC damage are experimentally and numerically investigated. Surface observations show that swell and exfoliation are formed on the OFC samples at 400 K and 600 K by scanning electron microscopy (SEM). The hydrogen ion energy varying from 20 to 200 eV at 400 K is observed to have little effect on OFC surface microstructure. The simulative results show that there exist different critical temperatures when the initial bubble radius changes. The bubble surface density rises and the bubble size decreases with increasing temperature (below the critical temperature). In addition, adjacent bubbles get closer to each other with the growth of hydrogen bubbles, and the strong tensile stress is produced inside the surrounding material of hydrogen bubbles. Some cracks caused by hydrogen bubbles appear on the surface of the OFC to relax the pressure-induced stress, ultimately leading to OFC FS/grids material damage. This investigation helps to understand hydrogen retention and failure mechanisms of OFC materials under extreme operation conditions in the NBI devices.


Sign in / Sign up

Export Citation Format

Share Document