Response of soil mineral nitrogen to total nitrogen and land-use in a long-term study of wheat pasture rotations

1988 ◽  
Vol 28 (4) ◽  
pp. 525
Author(s):  
AC Taylor ◽  
WJ Lill

All 6 treatments of a long-term wheat-pasture rotation experiment were soil sampled after a cultivated fallow close to sowing at Wagga Wagga. Analyses of the nitrogen (N) data show that total N (0-1 5 cm) could be used as a predictor of mineral N in the profile at sowing. Mineral N levels were expressed as a percentage of total N and reported as a mineralisation index. This index increased after a period of clover and was considerably higher for the first crop after pasture than for subsequent crops. The mineralisation index also increased as the pasture intensity (years pasture/total years) increased from 0.33 to 0.67. Total N alone accounted for no more than 20% of the variation in mineral N at sowing. The variance accounted for increased to 49.9 and 53.7% respectively when pasture frequency and crop number after pasture were included in the models.


2008 ◽  
Vol 23 (03) ◽  
pp. 250-259 ◽  
Author(s):  
Derek H. Lynch ◽  
Zhiming Zheng ◽  
Bernie J. Zebarth ◽  
Ralph C. Martin

AbstractThe market for certified organic potatoes in Canada is growing rapidly, but the productivity and dynamics of soil N under commercial organic potato systems remain largely unknown. This study examined, at two sites in Atlantic Canada (Winslow, PEI, and Brookside, NS), the impacts of organic amendments on Shepody potato yield, quality and soil mineral nitrogen dynamics under organic management. Treatments included a commercial hog manure–sawdust compost (CP) and pelletized poultry manure (NW) applied at 300 and 600 kg total N ha−1, plus an un-amended control (CT). Wireworm damage reduced plant stands at Brookside in 2003 and those results are not presented. Relatively high tuber yields (~30 Mg ha−1) and crop N uptake (112 kg N ha−1) were achieved for un-amended soil in those site-years (Winslow 2003 and 2004) when soil moisture was non-limiting. Compost resulted in higher total yields than CT in one of three site-years. Apparent recovery of N from CP was negligible; therefore CP yield benefits were attributed to factors other than N availability. At Winslow, NW300, but not NW600, significantly increased total and marketable yields by an average of 5.8 and 7.0 Mg ha−1. Plant available N averaged 39 and 33% for NW300 and NW600, respectively. Soil (0–30 cm) NO3−-N at harvest was low (<25 kg N ha−1) for CT and CP, but increased substantially both in season and at harvest (61–141 kg N ha−1) when NW was applied. Most leaching losses of NO3−-N occur between seasons and excessive levels of residual soil NO3-N at harvest, as obtained for NW600, must be avoided. Given current premiums for certified organic potatoes, improving yields through application of amendments supplying moderate rates of N or organic matter appears warranted.



2002 ◽  
Vol 139 (2) ◽  
pp. 115-127 ◽  
Author(s):  
MARTYN SILGRAM ◽  
BRIAN J. CHAMBERS

The effects of straw incorporation (early and late cultivation) and straw burning were contrasted in a split-plot study examining the impact of long-term straw residue management, and six fertilizer nitrogen (N) rates on soil mineral nitrogen, crop fertilizer N requirements and nitrate leaching losses. The experiments ran from 1984 to 1997 on light-textured soils at ADAS Gleadthorpe (Nottinghamshire, UK) and Morley Research Centre (Norfolk, UK).Soil incorporation of the straw residues returned an estimated 633 kg N/ha at Gleadthorpe and 429 kg N/ha at Morley on the treatment receiving 150 kg/ha per year fertilizer N since 1984. Straw disposal method had no consistent effect on grain and straw yields, crop N uptake, or optimal fertilizer N rates. In every year there was a positive response (P<0·001) to fertilizer N in straw/grain yields, N contents and crop N offtakes at both sites. Nitrate leaching losses were slightly reduced by less than 10 kg N/ha where straw residues had been incorporated, while fertilizer N additions increased nitrate leached at both sites.At both sites there was a consistent effect (P<0·001) of straw disposal method on autumn soil mineral N, with values following the pattern burn>early incorporate>late plough. The incorporation of straw residues induced temporary N immobilization compared with the treatment where straw was burnt, while the earlier timing of tillage on the incorporate treatment resulted in slightly more mineral N compared with the later ploughed treatment. Fertilizer N rate increased (P<0·001) soil mineral nitrogen at both sites. At Morley, there was more organic carbon in the plough layer where straw had been incorporated (mean 1·09 g/100 g) rather than burnt (mean 0·89 g/100 g), and a strong positive relationship between organic carbon and fertilizer N rate (r2=93·2%, P<0·01). There was a detectable effect of fertilizer N on readily mineralizable N in the plough layer at both Gleadthorpe (P<0·001) and Morley (P<0·05). At Morley, there was a consistent trend (P=0·06) for readily mineralizable N to be higher where straw had been incorporated rather than burnt, indicating that ploughing-in residues may contribute to soil nitrogen supply over the longer term.





1998 ◽  
Vol 49 (3) ◽  
pp. 511 ◽  
Author(s):  
J. F. Angus ◽  
A. F. van Herwaarden ◽  
D. P. Heenan ◽  
R. A. Fischer ◽  
G. N. Howe

The relative importance of soil mineral nitrogen (N) available at the time of sowing ormineralised during the growing season was investigated for 6 crops of dryland wheat. The soil mineral N in the root-zone was sampled at sowing and maturity and the rate of net mineralisation in the top 10 cm was estimated by sequential sampling throughout the growing season, using an in situ method. Mineralisation during crop growth was modelled in relation to total soil N, ambient temperature, andsoil water content. Mineral N accumulated before sowing varied by a factor of 3 between the sites (from 67 to 195 kgN/ha), while the net mineralisation during crop growth varied by a factor of 2 (from 43 to 99 kgN/ha). The model indicated that 0·092% of total N was mineralised per day when temperature and water were not limiting, with rates decreasing for lower temperatures and soil water contents. When tested with independent data, the model predicted the mineralisation rate of soil growing continuous wheat crops but underestimated mineralisation of soil in a clover-wheat rotation. For crops yielding <3 t/ha, the supply of N was mostly from mineralisation during crop growth and the contribution from mineral N accumulated before sowing was relatively small. For crops yielding >4 t/ha, thesupply of N was mostly from N present in the soil at the time of sowing. The implication is that for crops to achieve their water-limited yield, they must be supplied with an amount of N greater than can be expected from mineralisation during the growing season, either from fertiliser or from mineral N accumulated earlier.



2005 ◽  
Vol 36 (1) ◽  
pp. 2
Author(s):  
BETSY BATES
Keyword(s):  


2010 ◽  
Vol 41 (4) ◽  
pp. 23
Author(s):  
BRUCE JANCIN


2007 ◽  
Vol 38 (6) ◽  
pp. 14
Author(s):  
DAMIAN MCNAMARA
Keyword(s):  


2007 ◽  
Vol 38 (10) ◽  
pp. 45
Author(s):  
MARY ANN MOON
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document