Joint Inversion of Receiver Function and Surface-Wave Phase Velocity for Estimation of Shear-Wave Velocity of Sedimentary Layers

2006 ◽  
Vol 37 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Takeshi Kurose ◽  
Hiroaki Yamanaka
Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Ningya Cheng ◽  
Chuen Hon Cheng

Field data sets collected by an array monopole acoustic logging tool and a shear wave logging tool are processed and interpreted. The P‐ and S‐wave velocities of the formation are determined by threshold detection with cross‐correlation correction from the full waveform and the shear‐wave log, respectively. The array monopole acoustic logging data are also processed using the extended Prony’s method to estimate the borehole Stoneley wave phase velocity and attenuation as a function of frequency. The well formation between depths of 2950 and 3150 ft (899 and 960 m) can be described as an isotropic elastic medium. The inverted [Formula: see text] from the Stoneley wave phase velocity is in excellent agreement with the shear‐wave log results in this section. The well formation between the depths of 3715 and 3780 ft (1132 and 1152 m) can be described as a porous medium with shear‐wave velocity anisotropy about 10% to 20% and with the symmetry axis perpendicular to the borehole axis. The disagreement between the shear‐wave velocity from the Stoneley wave inversion and the direct shear‐wave log velocity in this section is beyond the errors in the measurements. Estimated permeabilities from low‐frequency Stoneley wave velocity and attenuation data are in good agreement with the core measurements. Also it is proven that the formation permeability is not the cause of the discrepancy. From the estimated “shear/pseudo‐Rayleigh” phase velocities in the array monopole log and the 3-D finite‐difference synthetics in the anisotropic formation, the discrepancy can best be explained as shear‐wave anisotropy.


Sign in / Sign up

Export Citation Format

Share Document