Automated compilation of pseudo-lithology maps from geophysical data sets: a comparison of Gustafson-Kessel and fuzzyc-means cluster algorithms

2011 ◽  
Vol 42 (4) ◽  
pp. 275-285 ◽  
Author(s):  
Hendrik Paasche ◽  
Detlef Eberle
Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. P11-P22 ◽  
Author(s):  
Hendrik Paasche ◽  
Jens Tronicke ◽  
Peter Dietrich

Partitioning cluster analyses are powerful tools for rapidly and objectively exploring and characterizing disparate geophysical databases with unknown interrelations between individual data sets or models. Despite its high potential to objectively extract the dominant structural information from suites of disparate geophysical data sets or models, cluster-analysis techniques are underused when analyzing geophysical data or models. This is due to the following limitations regarding the applicability of standard partitioning cluster algorithms to geophysical databases: The considered survey or model area must be fully covered by all data sets; cluster algorithms classify data in a multidimensional parameter space while ignoring spatial information present in the databases and are therefore sensitive to high-frequency spatial noise (outliers); and standard cluster algorithms such asfuzzy [Formula: see text]-means (FCM) or crisp [Formula: see text]-means classify data in an unsupervised manner, potentially ignoring expert knowledge additionally available to the experienced human interpreter. We address all of these issues by considering recent modifications to the standard FCM cluster algorithm to tolerate incomplete databases, i.e., survey or model areas not covered by all available data sets, and to consider spatial information present in the database. We have evaluated the regularized missing-value FCM cluster algorithm in a synthetic study and applied it to a database comprising partially colocated crosshole tomographic P- and S-wave-velocity models. Additionally, we were able to demonstrate how further expert knowledge can be incorporated in the cluster analysis to obtain a multiparameter geophysical model to objectively outline the dominant subsurface units, explaining all available geoscientific information.


Author(s):  
Francesca Pace ◽  
Alessandro Santilano ◽  
Alberto Godio

AbstractThis paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical fields are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth’s subsurface and then to undertake a critical evaluation of their benefits and limitations. Original works have been selected from the existing geophysical literature to illustrate successful PSO applied to the interpretation of electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, self-potential, direct current and seismic data. These case studies are critically described and compared. In addition, joint optimization of multiple geophysical data sets by means of multi-objective PSO is presented to highlight the advantage of using a single solver that deploys Pareto optimality to handle different data sets without conflicting solutions. Finally, we propose best practices for the implementation of a customized algorithm from scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the benefit of PSO practitioners or inexperienced researchers.


2021 ◽  
Author(s):  
Patricia MacQueen ◽  
Joachim Gottsmann ◽  
Matthew Pritchard ◽  
Nicola Young ◽  
Faustino Ticona J. ◽  
...  

2021 ◽  
Author(s):  
Xingang Jia ◽  
Qiuhong Han ◽  
Zuhong Lu

Abstract Background: Phages are the most abundant biological entities, but the commonly used clustering techniques are difficult to separate them from other virus families and classify the different phage families together.Results: This work uses GI-clusters to separate phages from other virus families and classify the different phage families, where GI-clusters are constructed by GI-features, GI-features are constructed by the togetherness with F-features, training data, MG-Euclidean and Icc-cluster algorithms, F-features are the frequencies of multiple-nucleotides that are generated from genomes of viruses, MG-Euclidean algorithm is able to put the nearest neighbors in the same mini-groups, and Icc-cluster algorithm put the distant samples to the different mini-clusters. For these viruses that the maximum element of their GI-features are in the same locations, they are put to the same GI-clusters, where the families of viruses in test data are identified by GI-clusters, and the families of GI-clusters are defined by viruses of training data.Conclusions: From analysis of 4 data sets that are constructed by the different family viruses, we demonstrate that GI-clusters are able to separate phages from other virus families, correctly classify the different phage families, and correctly predict the families of these unknown phages also.


2021 ◽  
Author(s):  
Jan Michalek ◽  
Kuvvet Atakan ◽  
Christian Rønnevik ◽  
Helga Indrøy ◽  
Lars Ottemøller ◽  
...  

<p>The European Plate Observing System (EPOS) is a European project about building a pan-European infrastructure for accessing solid Earth science data, governed now by EPOS ERIC (European Research Infrastructure Consortium). The EPOS-Norway project (EPOS-N; RCN-Infrastructure Programme - Project no. 245763) is a Norwegian project funded by National Research Council. The aim of the Norwegian EPOS e‑infrastructure is to integrate data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories. Among the six EPOS-N project partners, four institutions are providing data – University of Bergen (UIB), - Norwegian Mapping Authority (NMA), Geological Survey of Norway (NGU) and NORSAR.</p><p>In this contribution, we present the EPOS-Norway Portal as an online, open access, interactive tool, allowing visual analysis of multidimensional data. It supports maps and 2D plots with linked visualizations. Currently access is provided to more than 300 datasets (18 web services, 288 map layers and 14 static datasets) from four subdomains of Earth science in Norway. New datasets are planned to be integrated in the future. EPOS-N Portal can access remote datasets via web services like FDSNWS for seismological data and OGC services for geological and geophysical data (e.g. WMS). Standalone datasets are available through preloaded data files. Users can also simply add another WMS server or upload their own dataset for visualization and comparison with other datasets. This portal provides unique way (first of its kind in Norway) for exploration of various geoscientific datasets in one common interface. One of the key aspects is quick simultaneous visual inspection of data from various disciplines and test of scientific or geohazard related hypothesis. One of such examples can be spatio-temporal correlation of earthquakes (1980 until now) with existing critical infrastructures (e.g. pipelines), geological structures, submarine landslides or unstable slopes.  </p><p>The EPOS-N Portal is implemented by adapting Enlighten-web, a server-client program developed by NORCE. Enlighten-web facilitates interactive visual analysis of large multidimensional data sets, and supports interactive mapping of millions of points. The Enlighten-web client runs inside a web browser. An important element in the Enlighten-web functionality is brushing and linking, which is useful for exploring complex data sets to discover correlations and interesting properties hidden in the data. The views are linked to each other, so that highlighting a subset in one view automatically leads to the corresponding subsets being highlighted in all other linked views.</p>


2012 ◽  
Vol 90 (4) ◽  
pp. 425-433 ◽  
Author(s):  
Oscar Miguel Rivera-Borroto ◽  
Mónica Rabassa-Gutiérrez ◽  
Ricardo del Corazón Grau-Ábalo ◽  
Yovani Marrero-Ponce ◽  
José Manuel García-de la Vega

Cluster tendency assessment is an important stage in cluster analysis. In this sense, a group of promising techniques named visual assessment of tendency (VAT) has emerged in the literature. The presence of clusters can be detected easily through the direct observation of a dark blocks structure along the main diagonal of the intensity image. Alternatively, if the Dunn’s index for a single linkage partition is greater than 1, then it is a good indication of the blocklike structure. In this report, the Dunn’s index is applied as a novel measure of tendency on 8 pharmacological data sets, represented by machine-learning-selected molecular descriptors. In all cases, observed values are less than 1, thus indicating a weak tendency for data to form compact clusters. Other results suggest that there is an increasing relationship between the Dunn’s index as a measure of cluster separability and the classification accuracy of various cluster algorithms tested on the same data sets.


Author(s):  
Bruno Almeida Pimentel ◽  
Renata M. C. R. De Souza

Outliers may have many anomalous causes, for example, credit card fraud, cyberintrusion or breakdown of a system. Several research areas and application domains have investigated this problem. The popular fuzzy c-means algorithm is sensitive to noise and outlying data. In contrast, the possibilistic partitioning methods are used to solve these problems and other ones. The goal of this paper is to introduce cluster algorithms for partitioning a set of symbolic interval-type data using the possibilistic approach. In addition, a new way of measuring the membership value, according to each feature, is proposed. Experiments with artificial and real symbolic interval-type data sets are used to evaluate the methods. The results of the proposed methods are better than the traditional soft clustering ones.


Sign in / Sign up

Export Citation Format

Share Document