63 ESTABLISHMENT OF GREEN FLUORESCENT PROTEIN EXPRESSED DOG CELL LINES CONTROLLED BY DOXYCYCLINE

2010 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
M. J. Kim ◽  
H. J. Oh ◽  
J. E. Park ◽  
S. G. Hong ◽  
J. E. Kim ◽  
...  

An inducible gene expression system in transgenic animals has been widely used in biomedical science. The aim of this study was to establish green fluorescent protein (GFP) inducible dog cell line and evaluate the system in embryos using interspecies somatic cell nuclear transfer (iSCNT). Canine fetal fibroblasts were transfected with retroviral vector containing GFP, rtTA, and TRE and designated Gteton cell line. For iSCNT, bovine ovaries were collected from a local slaughterhouse and COCs were matured for 24 h. The denuded oocytes were enucleated, injected with Gteton cells, treated with 24 h of doxycycline (DOX), and electrically fused (NEPA GENE, 34 V, 15 μs, 2 pulses). The reconstructed oocytes were activated and then cultured in modified SOF medium. To verify the stability of the Gteton cells, 2 experiments were designed. Experiment 1 was designed to compare the cell size and viability of Gteton and nontransfected cells. Countness™ (Invitrogen, version 1.0, Carlsbad, CA, USA) was used for analysis. In experiment 2, the control of GFP gene expression was observed when the cells were cultured with 1 mg mL-1 of DOX. The cells were also cultured without DOX after 24 h of DOX treatment. Photographs were taken of cultured cells every 12 h. The intensity of GFP expression was analyzed by using Image J freeware (U.S. National Institutes of Health, version 1.42, NIH, Bethesda, MD, USA). To evaluate the reprogramming ability of the Gteton cells in embryos, another 2 experimental designs were planned. Experiment 3 estimated GFP expression in iSCNT embryos when they were cultured with and without DOX. Experiment 4 assessed the development of the iSCNT embryos under microscopy. Data were analyzed using statistical analysis system program (version 9.1, SAS Institute, Cary, NC, USA). In experiment 1, there was no significance (P < 0.05) in average viable cell size (13.7 v. 13.2 μm) or viability (97.0 v. 98.7%). In experiment 2, the GFP intensity increased steadily when cultured in medium containing DOX. The intensity was increased approximately two times after 24 h compared with 12 h of treatment. The intensity after 24 h of DOX treatment decreased to the basal level after 5 days. In experiment 3, the GFP intensity of iSCNT embryos cultured in mSOF containing DOX was increased approximately two times in 16-cell stage compared with 2-cell stage. In experiment 4, the cleavage rate was not significantly different between the 2 groups. In conclusion, we dtermined that the inducible system of Gteton cell line was established in a stable manner. Furthermore the results from iSCNT may indicate the possibility to produce GFP-expressed transgenic puppies controlled by doxycyline. This study was supported by Korean MEST through KOSEF (grant # M10625030005-09N250300510) and BK21 program, RNL BIO, and Natural Balance Korea.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 72-79
Author(s):  
Vicente J.F. Freitas ◽  
Iana S. Campelo ◽  
Mirelly M.A.S. Silva ◽  
Camila M. Cavalcanti ◽  
Dárcio I.A. Teixeira ◽  
...  

SummaryThis study aimed to investigate the ability of disulphide-less crotamine (dLCr) to complex DNA and to evaluate whether the DNA–dLCr complex is capable of improving transfection in bovine embryos. Three experiments were performed to: (i) evaluate the formation and stability of the DNA–dLCr complex; (ii) assess the dLCr embryotoxicity by exposure of bovine embryos to dLCr; and (iii) assess the efficiency of bovine embryo transfection after microinjection of the DNA–dLCr complex or green fluorescent protein (GFP) plasmid alone (control). DNA complexation by dLCr after 30 min of incubation at 1:100 and 1:50 proportions presented higher efficiency (P < 0.05) than the two controls: native crotamine (NCr) 1:10 and lipofectamine. There was no difference between DNA–dLCr 1:25 and the controls. The DNA–dLCr complexation was evaluated at different proportions and times. In all, at least half of maximum complexation was achieved within the initial 30 min. No embryotoxicity of dLCr was verified after exposure of in vitro fertilized embryos to different concentrations of the peptide. The effectiveness of dLCr to improve exogenous gene expression was evaluated by microinjection of the DNA–dLCr complex into in vitro fertilized zygotes, followed by verification of both embryo development and GFP expression. From embryos microinjected with DNA only, 4.6% and 2.8% expressed the GFP transgene at day 5 and day 7, respectively. The DNA–dLCr complex did not increase the number of GFP-positive embryos. In conclusion, dLCr forms a complex with DNA and its application in in vitro culture is possible. However, the dLCr peptide sequence should be redesigned to improve GFP expression.


2009 ◽  
Vol 84 (5) ◽  
pp. 2629-2634 ◽  
Author(s):  
Shin-Hee Kim ◽  
Siba K. Samal

ABSTRACT To gain insight into the role of untranslated regions (UTRs) in regulation of foreign gene expression, replication, and pathogenicity of Newcastle disease virus (NDV), a green fluorescent protein (GFP) gene flanked by 5′ and 3′ UTRs of each NDV gene was individually expressed by recombinant NDVs. UTRs of each gene modulated GFP expression positively or negatively. In particular, UTRs of the M and F genes enhanced levels of GFP expression at the junction of the P and M genes without altering replication of NDV, suggesting that UTRs could be used for enhanced expression of a foreign gene by NDV.


2013 ◽  
Vol 95 (3) ◽  
pp. 319-329
Author(s):  
Atsushi Hirao ◽  
Tatsuo Kawarasaki ◽  
Kenjiro Konno ◽  
Satoko Enya ◽  
Masatoshi Shibata ◽  
...  

2003 ◽  
pp. 245-260
Author(s):  
Laura E. Via ◽  
Subramanian Dhandayuthapani ◽  
Dusanka Deretic ◽  
V. Deretic

2006 ◽  
Vol 50 (8) ◽  
pp. 2806-2813 ◽  
Author(s):  
T. Ueno ◽  
Y. Eizuru ◽  
H. Katano ◽  
T. Kurata ◽  
T. Sata ◽  
...  

ABSTRACT Promyelocytic leukemia (PML) bodies are discrete nuclear foci that are intimately associated with many DNA viruses. In human cytomegalovirus (HCMV) infection, the IE1 (for “immediate-early 1”) protein has a marked effect on PML bodies via de-SUMOylation of PML protein. Here, we report a novel real-time monitoring system for HCMV-infected cells using a newly established cell line (SE/15) that stably expresses green fluorescent protein (GFP)-PML protein. In SE/15 cells, HCMV infection causes specific and efficient dispersion of GFP-PML bodies in an IE1-dependent manner, allowing the infected cells to be monitored by fluorescence microscopy without immunostaining. Since a specific change in the detergent solubility of GFP-PML occurs upon infection, the infected cells can be quantified by GFP fluorescence measurement after extraction. With this assay, the inhibitory effects of heparin and neutralizing antibodies were determined in small-scale cultures, indicating its usefulness for screening inhibitory reagents for laboratory virus strains. Furthermore, we established a sensitive imaging assay by counting the number of nuclei containing dispersed GFP-PML, which is applicable for titration of slow-growing clinical isolates. In all strains tested, the virus titers estimated by the GFP-PML imaging assay were well correlated with the plaque-forming cell numbers determined in human embryonic lung cells. Coculture of SE/15 cells and HCMV-infected fibroblasts permitted a rapid and reliable method for estimating the 50% inhibitory concentration values of drugs for clinical isolates in susceptibility testing. Taken together, these results demonstrate the development of a rapid, sensitive, quantitative, and specific detection system for HCMV-infected cells involving a simple procedure that can be used for titration of low-titer clinical isolates.


Sign in / Sign up

Export Citation Format

Share Document