gfp expression
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 58)

H-INDEX

37
(FIVE YEARS 1)

Author(s):  
Kiley Hughes ◽  
Ashka Shah ◽  
Xiaofei Bai ◽  
Jessica Adams ◽  
Rosemary Bauer ◽  
...  

Abstract Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have twelve isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive GFP expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.


2021 ◽  
Author(s):  
mohammad panahi ◽  
Saeed Samani ◽  
Nasrin Mohajeri ◽  
Akram Sadat Tabatabee Bafroee ◽  
Kazem Baesi ◽  
...  

Abstract A recent suggestion for cancer therapy is targeting intracellular homeostatic signaling pathways like autophagy providing the balance between metabolism and cell cycling. Our study focused on investigating the relationship between autophagy activation by Beclin1 transfection and assessing Terf1 and Terf2 expression as shelterin proteins. The beclin1-containing plasmid was introduced to the U-2OS and Huh7 cell lines using Lipofectamine. The LC3-II as an intracellular autophagosomal marker was detected in transfected cells by flow cytometry. Also, the cells were treated with 3-methyladenine and metformin as autophagy inhibitors and inducers, respectively. Finally, the expression levels of Terf1 and Terf2 were analyzed by real-time PCR. Fluorescent images and flow cytometry results proved excellent GFP expression in the transfected cells. The results of real-time PCR demonstrated that autophagy induction by Beclin1 was increased Terf1 expression level in U-2OS cells up to 451%, while Huh7 cells suffered from the decreased expression of Terf1. Altogether, Terf2 expression was enhanced significantly in both cell lines after 48h treatment in comparison with 24h treatment. The obtained data provided that Beclin1-based activation of autophagy leads to overexpression of some protective shelterin proteins.


2021 ◽  
Author(s):  
Emily K Meseck ◽  
Ghiabe Guibinga ◽  
Stephen Wang ◽  
Cameron McElroy ◽  
Eloise Hudry ◽  
...  

Biodistribution of self-complementary adeno-associated virus-9 (scAAV9)-chicken beta-actin promoter-green fluorescent protein (GFP) was assessed in juvenile cynomolgus macaques infused intrathecally via lumbar puncture or the intracisterna magna (1.0x1013 or 3.0x1013 vg/animal), with necropsy 28 days later. Our results characterized central nervous system biodistribution compared with systemic organs/tissues by droplet digital polymerase chain reaction for DNA and in situ hybridization. GFP expression was characterized by Meso Scale Discovery electrochemiluminescence immunosorbent assay and immunohistochemistry (IHC). Biodistribution was widespread but variable, with vector DNA and GFP expression greatest in the spinal cord, dorsal root ganglia (DRG), and certain systemic tissues (e.g., liver), with low concentrations in many brain regions despite direct cerebrospinal fluid administration. Transduction and expression were observed primarily in perivascular astrocytes in the brain, with a paucity in neurons. Greater GFP expression was observed in hepatocytes, striated myocytes, cardiomyocytes, spinal cord lower motor neurons, and DRG sensory neurons by IHC. These results suggest caution for use of scAAV9-based intrathecal delivery with the current expression cassette as a modality for neurologic diseases that require widespread brain neuronal expression. This capsid/expression cassette combination may be better suited for diseases that express a secreted protein and/or do not require widespread brain neuronal transduction.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3308-3308
Author(s):  
Bianca L Rivera ◽  
Shanisha Gordon ◽  
Srinivas Aluri ◽  
Yang Shi ◽  
Samarpana Chakraborty ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are clonal, myeloid malignancies that emerge and progress due to the expansion of disease-initiating aberrant hematopoietic stem cells that can evolve into Acute Myeloid Leukemia (AML). FDA approved therapies such as the recently approved Bcl-2 inhibitor venetoclax, FLT3 inhibitors, among others, have moved the field forward in newly diagnosed MDS/AML. However, relapsed/refractory (R/R) disease, as well as leukemic transformation post-MDS continues to have a poor prognosis. A pool of hematopoietic stem and progenitor cells (HSPCs) escape chemotherapy, proliferate during disease remission, and causes relapse partly in effect due to signaling effector mutations. It is imperative, for future therapeutic agents, to target these HSPCs populations to achieve a durable remission for aggressive myeloid malignancies. There is an urgent need to develop mouse models that recapitulate human disease for the study of pathogenesis and drug development in these disorders. Signal transducer and activator of transcription 3 (STAT3) belongs to the STAT family of transcription factors that are inappropriately activated in several malignancies. Our preliminary data indicates that STAT3 is overexpressed in MDS and AML stem cells and is associated with an adverse prognosis in a large cohort of patients. (Shastri et al, JCI 2018). We have successfully demonstrated that a selective antisense oligonucleotide inhibitor of STAT3, Danvatirsen, is rapidly incorporated into MDS/AML HSPCs and induces selective apoptosis and downregulation of STAT3 in these cells in comparison with healthy control HSPCs. To determine the role of STAT3 in the initiation of myeloid malignancies, a murine model was generated by crossing R26STAT3C stopfl/fl mice with vavCre transgenic mice. In this model, a hyperactive version of STAT3, STAT3C, is knocked into the Rosa26 locus with an upstream floxed stop cassette (R26STAT3C stopfl). Excision of the stop cassette by Cre recombinase leads to expression of a flag-tagged STAT3C protein and concomitant expression of EGFP in hematopoietic cells. GFP expression allows tracking of cells in which the floxed stop/Neo cassette is deleted and STAT3C is expressed. STAT3C-vavCre double transgenic mice were validated by GFP expression in HSPCs and differentiated hematopoietic cells. The STAT3C-vavCre mice developed ruffled fur, a hunched phenotype and weight-loss by five months of age. CBC analysis of STAT3C-vavCre mice shows a proliferative phenotype reminiscent of high-risk MDS/AML with higher WBC & platelet counts and lower hemoglobin (Figure 1A). Review of the peripheral smear showed an increase in granulocytic precursors that are likely leukemic blasts (Fig 1E). In addition, STAT3C-vavCre mice developed massive splenomegaly (Figure 1B). HSC lineage analysis by FACS showed the presence of GFP positive cells (Figure 1C) with increased expansion of the MPP and HSC compartment compared to controls, suggesting a stem and progenitor phenotype (Figure 1D). Murine myeloid colony assays showed larger colonies in the STAT3C-vavCre mice compared to controls. At this time, single cell RNA sequencing, and bulk RNA sequencing are being performed and will be used to further characterize the phenotype of the STAT3C-vavCre transgenic mice in addition to bone marrow and splenic aspirates & biopsies. Through the generation of a STAT3C-vavCre mouse model, that recapitulates the features of MDS/AML, we aim to further our understanding of the molecular mechanisms and pathways that play an important role in MDS to AML transformation and will help us identify downstream mediators of this event that can be therapeutically targeted. We would also like to use this murine model as an ideal substrate for preclinical studies of STAT3 targeting therapies in hematologic malignancies such as previously reported antisense inhibitors of STAT3 and STAT3 degraders. Figure 1 Figure 1. Disclosures Frank: Roche Genentech: Research Funding; Kymera: Consultancy, Research Funding; Revitope: Consultancy; Vigeo: Consultancy. Verma: Throws Exception: Current equity holder in publicly-traded company; BMS: Research Funding; GSK: Research Funding; Acceleron: Consultancy; Incyte: Research Funding; Stelexis: Current equity holder in publicly-traded company; Medpacto: Research Funding; Curis: Research Funding; Eli Lilly: Research Funding; Celgene: Consultancy; Stelexis: Consultancy, Current equity holder in publicly-traded company; Novartis: Consultancy. Shastri: Kymera Therapeutics: Research Funding; GLC: Consultancy; Guidepoint: Consultancy; Onclive: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2940-2940
Author(s):  
Christi Salisbury-Ruf ◽  
Richard H. Smith ◽  
Fariba Chinian ◽  
Daisuke Araki ◽  
Keyvan Keyvanfar ◽  
...  

Abstract Homology-directed gene editing of hematopoietic stem and progenitor cells (HSPCs) has the potential to treat inherited blood disorders not amendable to CRISPR-Cas9 gene inactivation or single base editing. For many diseases, one of the major hurdles is viral delivery of large DNA templates needed for gene correction. Due to limited adeno-associated virus (AAV) packaging capacity other delivery approaches are needed. Baculovirus (BV), specifically Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is a large double-stranded DNA (dsDNA) virus widely used for protein expression and AAV production. In addition, BV has been proposed as a potential therapeutic vector (Ono, Viruses 2018). BV does not replicate in mammalian cells, can deliver large quantities of DNA with virtually unlimited packaging capacity, and can express genes under the control of mammalian promoters. While capable of transducing human hepatic cells and some cell lines (Chen, Biotechnol Adv. 2011), to our knowledge BV transduction efficiency has not been tested in human CD34+ HSPCs or shown in any hematopoietic cell line. Here we show for the first time that BV can be used as a gene delivery vector for primary human CD34+ cells mobilized from healthy donors. We constructed VSV-G pseudotyped BV with a copGFP reporter flanked by 4kb homology arms (HAs) to ITGB2, a locus mutated in leukocyte adhesion deficiency type I (LAD-1) (Fig. A, top). As measured by qPCR, viral DNA was detected in CD34+ cells after transduction at a multiplicity of infection (MOI) of 50, suggesting vector binding and entry in these cells. However, although toxicity was not observed, GFP expression as assessed by flow cytometry was mostly undetectable (less than 0.1%). In contrast, robust (>70%) GFP expression was measured in 293A cells using the same BV vector, suggesting that an inhibitory cellular process was uniquely triggered in primary CD34+ cells following transduction with BV. Recent work has shown that BV can activate cellular innate immune pathways including toll-like receptors (TLRs) (Abe, J Virol 2009) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (Amalfi S, JVI 2020) resulting in viral clearance and attenuation of gene expression (Ono, JVI 2014). We hypothesized that inhibition of activated cellular innate immune pathways may allow for more efficient BV gene expression in human CD34+ HSPCs. To examine this possibility, we tested over a dozen small molecule inhibitors at multiple doses targeting the major dsDNA sensing innate immune pathways including cGAS-STING (Fig. A, bottom). We found that a 45-minute pre-treatment with the STING inhibitor, H-151, while slightly toxic, enhanced GFP expression several fold, from less than 0.1% to an average of 1.5% in multiple independent donors (Fig. B-C). To improve viability, we also targeted cell death pathways. We tested the pan-caspase inhibitor, zVAD-FMK, which can inhibit both innate activation of gasdermin D (GSDMD), a major dsDNA sensing pathway, as well as apoptotic cell death. We additionally tested the necroptosis inhibitor Nec-1, as necroptosis can be activated in settings of apoptotic inhibition and inflammation. Notably, the combination of both inhibitors with H-151 improved not only cell viability, but also substantially enhanced GFP expression (8%), suggesting a synergistic benefit by inhibiting both innate immune activation and cell death pathways (Fig. D-E). To assess whether BV can efficiently transduce HSPCs with long-term repopulating activity, we pre-stimulated CD34+ cells for 48 hours in culture followed by transduction with BV at an MOI of 25 with our optimized drug cocktail. We examined GFP positivity in both CD34+CD38+ progenitors and CD34+CD38- HSC enriched populations by flow cytometry. After 24 hours, we found an average of 28% GFP+ CD34+CD38- cells and 8% GFP+ CD34+CD38+ progenitors (Fig. F-G). These data suggest that using our optimized approach, BV can target more primitive HSPCs. Collectively, our results lay the groundwork for future studies characterizing innate immune responses to dsDNA viruses in CD34+ cells, and highlight the potential use of BV as a delivery system for homology-directed gene editing in HSPCs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 759-759
Author(s):  
Xiuqi Li ◽  
Larisa Lozovatsky ◽  
Jackie A. Fretz ◽  
Karin E. Finberg

Abstract Iron deficiency anemia (IDA) has been identified as a potent stimulator of FGF23 (fibroblast growth factor 23), a phosphaturic hormone classically thought to be produced by bone-embedded osteocytes. Recently, both phlebotomy and erythropoietin administration have been shown to upregulate FGF23 production in bone marrow. However, the cell type(s) mediating FGF23 upregulation in states of perturbed erythropoiesis require further clarification. Tmprss6 -/- mice exhibit hepcidin elevation leading to systemic iron deficiency and iron-restricted anemia. We previously reported that Tmprss6-/- mice exhibit altered phosphate balance, elevated circulating FGF23, and Fgf23 mRNA upregulation in bone marrow but not cortical bone. Here, we clarify the sites of Fgf23 promoter activity in Tmprss6 -/- bone marrow using a reporter allele in which the enhanced green fluorescent protein (eGFP) coding sequence has been knocked into the endogenous Fgf23 locus. We generated Tmprss6 +/+,Tmprss6 +/-, and Tmprss6 -/- littermates of both sexes that carried either one (Fgf23 +/eGFP) or zero (Fgf23 +/+) copies of the reporter allele. Tmprss6-/- mice showed hyperhepcidinemia, hypoferremia, microcytic anemia, and tissue iron deficiency, which were not altered by heterozygous Fgf23 disruption (Figure 1A-C). By ELISA, Tmprss6-/- Fgf23 +/eGFP mice showed plasma levels of "total" FGF23 (intact, active hormone and C-terminal cleaved fragments) that remained markedly elevated compared to Tmprss6+/+ littermates (Figure 1D). Total FGF23 elevation in Tmprss6-/- Fgf23 +/eGFP mice was slightly less pronounced than Tmprss6-/- Fgf23 +/+ mice, suggesting an effect of Fgf23 gene dosage. In mice with 2 intact Fgf23 alleles, serum erythropoietin showed a strong linear correlation with plasma total FGF23. By confocal imaging, femurs of mice carrying the Fgf23 eGFP allele showed green fluorescence in vascular regions of the bone marrow but not in the bone cortex. Green fluorescence was more intense in Tmprss6-/- Fgf23+/eGFP mice than non-anemic controls. By flow cytometry of enzymatically digested bone marrow, we observed bright green fluorescence in a subset of endothelial cells (CD45 - Ter119 - CD31 +) exclusively in mice carrying the Fgf23 eGFP reporter allele (Figure 1E). The percentage of endothelial cells that were GFP bright was higher in Tmprss6-/- Fgf23 +/eGFP versus non-anemic mice. To clarify the endothelial cell subtype that expresses Fgf23, we mined published transcriptomic datasets from mice of normal iron balance and discovered higher Fgf23 mRNA in bone marrow sinusoidal endothelial cells compared to other bone marrow endothelial cell populations. Accordingly, we used anti-GFP immunohistochemistry in formalin-fixed bone marrow sections to assess Fgf23 eGFP reporter allele expression in the context of tissue architecture. Tmprss6-/- Fgf23 +/eGFP mice showed GFP expression in bone marrow sinusoidal endothelial cells, which was more intense than in non-anemic controls (Figure 1F). GFP reporter expression was also detected in rare cells of the thymus but not in liver, spleen, heart, muscle, or kidney. Collectively, our data reveal that bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in chronic IDA. Because IDA in Tmprss6-/- mice results from pathologic hepcidin elevation, we also sought to determine if bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in anemic mice with intact hepcidin regulation. We therefore subjected Fgf23 +/eGFP mice (with 2 intact Tmprss6 alleles) to a 500µl phlebotomy regimen (with saline volume replacement) known to induce marked anemia and hepcidin suppression. Compared to non-phlebotomized Fgf23 +/eGFP controls, phlebotomized Fgf23 +/eGFP mice showed severe anemia, elevated serum erythropoietin, and elevated plasma FGF23 18 hours after blood loss. Additionally, immunohistochemistry revealed more intense GFP expression in bone marrow sinusoidal endothelial cells of phlebotomized Fgf23 +/eGFP mice than non-phlebotomized controls. Taken together, our results show for the first time that bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in both acute and chronic anemia. Given the serum erythropoietin elevation in both models, our findings suggest that erythropoietin may act directly or indirectly on sinusoidal endothelial cells to promote FGF23 production during anemia. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2938-2938
Author(s):  
Ritu M Ramamurthy ◽  
Wen Ting Zheng ◽  
Sunil George ◽  
Meimei Wan ◽  
Yu Zhou ◽  
...  

Abstract Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed in those same cell types in vivo. It has been also recognized that there are marked species-specific differences in AAV-vector tropism, raising the critical question of the accuracy with which various animal models will likely predict tropism/vector transduction efficiency, and eventual treatment success in humans. Human liver tissue equivalents (hLTEs) are comprised of major cell types in the liver in physiologically relevant frequencies and possess the ability to recapitulate the biology and function of native human liver. Here, we hypothesize that hLTEs can be used as a better model to predict the efficacy and safety of AAV gene therapy in humans. We fabricated hLTEs using 75% hepatocytes, 10% stellate cells, 10% Kupffer cells, and 5% liver sinusoid-derived endothelial cells in 96-well Elplasia plates with 79 microwells per well. hLTEs were transduced at an MOI of 10 5vg/cell, on the day of fabrication, with the clinically relevant serotypes AAV5 (hLTE-5) or AAV3b (hLTE-3b), both encoding a GFP reporter. After 4 days of self-aggregation, live/dead assay was performed to confirm viability. Non-transduced hLTEs served as negative controls (hLTE(-)), and hLTEs exposed to 20 mM acetaminophen were used as positive controls for liver inflammation/damage. Incucyte® Live-Cell Imaging system was used to track the aggregation and GFP expression of hLTEs. Over the course of the next 5 days, media was collected to determine hepatic functionality, RNA was isolated to assess dysregulation of genes involved in inflammation and fibrosis, DNA was isolated to determine whether AAV vectors integrate into the genome of human hepatocytes and, if so, to define the frequency at which this occurs and the genomic loci of integration, and hLTEs were fixed and processed at appropriate times for histological analyses and transmission electron microscopy (TEM). TEM analysis revealed that all groups exhibited microvilli and bile-canaliculus-like structures, demonstrating the formation of a rudimentary biliary system and, more importantly, proving that hLTEs resemble native liver structure. Incucyte® imaging showed that AAV5 and AAV3b transduction impaired formation of hLTEs (57.57 ± 2.42 and 24.57 ± 4.01 spheroids/well, respectively) in comparison with hLTE(-) (74.86 ± 3.8 spheroids/well). Quantification of GFP expression demonstrated that AAV5 yielded the most efficient transduction of hLTEs (fold change in GFP expression compared to control: 2.73 ± 0.09 and 1.19 ± 0.03 for hLTE-5 and hLTE-3b, respectively). Chromogenic assays showed decreased urea production in cell culture supernatants of AAV transduced groups compared to the non-transduced hLTEs on days 6 and 10 of culture, demonstrating decreased hepatocyte functionality. However, ALT and AST levels were similar in all groups. On day 10, hLTEs were either used for RNA isolation or fixed in 4% PFA and processed for histology. Masson's Trichrome and Alcian Blue/Sirius Red staining was performed to detect fibrosis, which was then quantified using ImageJ. These analyses showed no significant increase in fibrosis in either hLTE-5 or hLTE-3b compared to hLTE(-). Nevertheless, RT 2 PCR Array for Human Fibrosis detected dysregulation of several genes involved in fibrosis/inflammation in both hLTE-5 and hLTE-3b (16/84 and 26/84, respectively). In conclusion, data collected thus far show successful recapitulation of native liver biology and demonstrate that AAV5 transduces hLTEs more efficiently than AAV3b. However, impaired self-aggregation and decreased hepatocyte functionality was observed in both AAV-transduced groups. Studies to address the incidence and location(s) of AAV integration are ongoing. We have thus shown that the hLTE system can provide critical new knowledge regarding the efficacy and safety of AAV gene therapy in the human liver. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madhuri Gokumakulapalle ◽  
Li Wang ◽  
Ya-Fang Mei

Human adenovirus (Ad)-vectored vaccines require viruses that can internalize into host cells and express the vaccine antigen. Evaluation of the expressed antigen in animal cells is a critical step in preclinical trials of viral vaccines. Due to the species specificity of Ads, it is difficult to find a suitable animal model. Thus, in this study, we compared the efficacy of Ad 11 prototype (Ad11p)-mediated green fluorescence protein (GFP) expression in cell lines of dog (MDCK), hamster (CHO), and mouse (McCoy and C127). Although these cell lines did not express the known primary cellular receptors for Ad11p virus infection (i.e., CD46), Ad11pE1GFP could infect and express GFP with various efficacies. For instance, it manifested relatively higher GFP expression in MDCK than in CHO, McCoy, and C127. However, infection leading to efficient viral release was not observed in any of the studied cell lines. The apparent differences were attributed to particularities of mouse and hamster cell lines, which might have led to the repression of viral DNA synthesis and to the low level of GFP expression mediated by Ad11pe3GFP. Moreover, our results revealed that undetectable hexon protein hampered the assembly of virus particles in CHO and MDCK cells. Ad11p differed from Ad5 in the ability for viral DNA synthesis when infecting CHO cells. Although a defective Ad has been successfully developed for SARS-CoV-2 vaccines in clinical applications, it has been difficult to generate one that can be used as an oral SARS-CoV-2 vaccine. Fortunately, our replication-competent Ad 11p vector might solve this problem. Regarding the use of Ad-vector candidates for vaccine purposes, this study demonstrates the selection of animal cell lines and determination of suitable virus doses in in vitro experiments.


Author(s):  
Rui Xu ◽  
Shaojun Du

Lifeact-GFP is a frequently used molecular probe to study F-actin structure and dynamic assembly in living cells. In this study, we generated transgenic zebrafish models expressing Lifeact-GFP specifically in cardiac muscles to investigate the effect of Lifeact-GFP on heart development and its application to study cardiomyopathy. The data showed that transgenic zebrafish with low to moderate levels of Lifeact-GFP expression could be used as a good model to study contractile dynamics of actin filaments in cardiac muscles in vivo. Using this model, we demonstrated that loss of Smyd1b, a lysine methyltransferase, disrupted F-actin filament organization in cardiomyocytes of zebrafish embryos. Our studies, however, also demonstrated that strong Lifeact-GFP expression in cardiomyocytes was detrimental to actin filament organization in cardiomyocytes that led to pericardial edema and early embryonic lethality of zebrafish embryos. Collectively, these data suggest that although Lifeact-GFP is a good probe for visualizing F-actin dynamics, transgenic models need to be carefully evaluated to avoid artifacts induced by Lifeact-GFP overexpression.


2021 ◽  
Vol 14 (10) ◽  
pp. 1463-1472
Author(s):  
Tian-Lan Lin ◽  
◽  
Wei-Ting Zeng ◽  
Fang Duan ◽  
Yin-Hui Pei ◽  
...  

AIM: To investigate the effect of Staphylococcus aureus (S. aures) lysates (SALs) on herpes simplex virus type-I (HSV1) infection in human corneal epithelial (HCE) cells and in a mouse model of HSV1 keratitis. METHODS: HCE, Vero, HeLa, and BV2 cells were infected with HSV1 [HSV1 f strain, HSV1f; HSV-1-H129 with green fluorescent protein (GFP) knock-in, HSV1g]. Pre- or post-infection, SAL at various concentrations was added to the culture medium for 24h. GFP fluorescence in HSV1g or plaque formation by HSV1f were examined. The effects of heat-treated SAL, precooled acetone-precipitated SAL, and SAL subjected to ultrafiltration (100 kDa) were evaluated. The effects of other bacterial components and lysates on HSV1 infection were also tested, including lipoteichoic acid (LTA), peptidoglycan (PGN), staphylococcal protein A (SPA), and α-hemolysin from S. aureus (α-toxin) as well as lysates from a wild-type S. aureus strain, S. epidermidis, and Escherichia coli (W-SAL, SEL, and ECL, respectively). In addition, SAL eye drops were applied topically to BALB/c mice with HSV1 keratitis, followed by in vivo observations. RESULTS: The cytopathic effect, plaque formation (HSV1f), and GFP expression (HSV1g) in infected cells were inhibited by SAL in a dose-dependent manner. The active component of SAL (≥100 kDa) was heat-sensitive and retained activity after acetone precipitation. In HSV1g-infected cells, treatment with LTA-sa, α-toxin, PGN-sa, or SPA did not inhibit GFP expression. SAL, W-SAL, and SEL (but not ECL) decreased GFP expression. In mice with HSV1 keratitis, SAL reduced corneal lesions by 71%. CONCLUSION: The results of this study demonstrate that SAL can be used to inhibit HSV1 infection, particularly keratitis. Further studies are needed to determine the active components and mechanism underlying the effects of SAL.


Sign in / Sign up

Export Citation Format

Share Document