Water repellency in a New Zealand development sequence of yellow brown sands

Soil Research ◽  
1993 ◽  
Vol 31 (5) ◽  
pp. 641 ◽  
Author(s):  
MG Wallis ◽  
DJ Horne ◽  
AS Palmer

A series of sands on the west coast of the lower North Island, New Zealand, were studied to investigate the effects of time, topography and vegetation cover upon the development of soil water repellency. Severe repellency was measured with the molarity of ethanol droplet (MED) index in the Waitarere and Motuiti dune phase sands, of age <130 years and c. 500 years respectively. In each dune phase, the dune sands were more repellent than the lower lying soils of the sand plains. Low or zero MED values were measured in the 1600-6000 year old Foxton dune phase sands and 10 000-25 000 year old Koputaroa dune phase sandy loams under either pasture or native bush. There was no consistent relationship between bush or pasture cover and repellency severity in the Foxton and Koputaroa soils, however, the species composition of the pasture and bush differed. The Waitarere sand was the most repellent soil, despite a low organic carbon content. The carbon content profiles of most of the soils did not appear to be related to the respective MED profiles of repellency severity. The MED values of the surface layer from five dune sands were generally related inversely to the fulvic acid (FA) content and proportionally to the humic acid to fulvic acid ratio (HA/FA), which were measured in a previous study. The pH of the five soils ranged from 5.61 to 6.89, with no apparent relationship between pH and MED. A study of soil water content indicated that repellency reduced rainfall infiltration into the Waitarere and Motuiti sands and the Himatangi sand, found on elevated sand plains. The most severely repellent sands had the greater variability in soil water content after rainfall.

2018 ◽  
Vol 70 (1) ◽  
pp. 151-161 ◽  
Author(s):  
I. Soltani ◽  
Y. Fouad ◽  
D. Michot ◽  
P. Bréger ◽  
R. Dubois ◽  
...  

Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 281-290 ◽  
Author(s):  
Cecilie Hermansen ◽  
Per Moldrup ◽  
Karin Müller ◽  
Peter Weber Jensen ◽  
Carlo van den Dijssel ◽  
...  

2018 ◽  
Vol 66 (4) ◽  
pp. 421-428 ◽  
Author(s):  
Dušan Igaz ◽  
Vladimír Šimanský ◽  
Ján Horák ◽  
Elena Kondrlová ◽  
Jana Domanová ◽  
...  

Abstract During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.


2001 ◽  
Vol 65 (6) ◽  
pp. 1667-1674 ◽  
Author(s):  
Louis W. Dekker ◽  
Stefan H. Doerr ◽  
Klaas Oostindie ◽  
Apostolos K. Ziogas ◽  
Coen J. Ritsema

Soil Science ◽  
2007 ◽  
Vol 172 (8) ◽  
pp. 577-588 ◽  
Author(s):  
Lis W. de Jonge ◽  
Per Moldrup ◽  
Ole H. Jacobsen

2017 ◽  
Vol 65 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Klaas Oostindie ◽  
Louis W. Dekker ◽  
Jan G. Wesseling ◽  
Violette Geissen ◽  
Coen J. Ritsema

Abstract Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.


2021 ◽  
Author(s):  
Michelle Schurmann

<p><b>Efficient and effective irrigation scheduling is strongly dependent upon accurate estimation of crop evapotranspiration (ETc), this requires understanding and incorporation of the effects that different soil conditions, orchard designs and trellis systems have on ETc. Orchard designs and trellis systems are designed to harness ≥ 85% light interception when fully grown, which is expected to lead to high yield and fruit quality. To investigate the effectiveness of such designs, an experiment in Hawke’s Bay, New Zealand, was carried out. Scilate apple trees of fifth-leaf vee and tall spindle, fourth-leaf planar, and Syrah grapes that were seven-years-old grown on silt-loam soil, and fourteen-years-old grown on stoney soil were used to investigate how light interception (LI), leaf area index (LAI), yield and fruit quality differed among these orchard designs, and ultimately affected evapotranspiration during the 2019/20 season. </b></p><p>Frequency domain reflectometers measuring soil water content (SWC), and tensiometers (matric potential) were used to continuously measure the soil water balance and estimate crop evapotranspiration. Light interception (LI-COR, Lincoln, Nebraska, USA) and manual LAI readings were taken over four periods from budburst to full canopy. Fresh weight yield was extrapolated from a sample per tree/vine (n=30), maturity was measured by starch pattern index in apples, and quality was estimated from dry matter content (DMC%), and soluble solids content. Hourly ETo was computed using the FAO standardised Penman-Monteith equation, and data collected by an automated on-site weather station. ETc was estimated for ‘well-watered’ conditions using extrapolated daily light interception measurements, and compared with measured changes in SWC. </p><p>The apple trellis systems showed variation in LI (vee: 56%, tall spindle: 50%, planar: 36%), and LAI (vee: 3.2, tall spindle: 1.6, planar: 1.3). The vee system had the largest fresh weight yield in tonnes per hectare (vee: 141, tall spindle: 108, planar: 54). The different aged vines and soil type also showed variability in LI (young Syrah: 36%, old Syrah: 22%) and LAI (young Syrah: 1.3, old Syrah: 0.7). This variability was particularly obvious in the SWC results, where tall spindle showed the highest ETc and change in SWC, whereas planar and vee the lowest which was attributed to an ‘over-irrigated’ environment causing waterlogging, and ultimately decreasing transpiration, despite vee having the highest LI and LAI. Differences in orchard design and trellis system caused changes in ETc and soil water content which can be illustrated by light interception and LAI. However, this thesis demonstrated that soil and groundwater heterogeneity can cause significant variability in results which needs to be accounted for when modelling, irrigating and growing. Future work suggestions are the inclusion of transpiration measurements using sap flow meters to differentiate drainage and groundwater effects from ETc, and to further clarify when the trees/vines are being over-watered.</p>


2021 ◽  
Author(s):  
Michelle Schurmann

<p><b>Efficient and effective irrigation scheduling is strongly dependent upon accurate estimation of crop evapotranspiration (ETc), this requires understanding and incorporation of the effects that different soil conditions, orchard designs and trellis systems have on ETc. Orchard designs and trellis systems are designed to harness ≥ 85% light interception when fully grown, which is expected to lead to high yield and fruit quality. To investigate the effectiveness of such designs, an experiment in Hawke’s Bay, New Zealand, was carried out. Scilate apple trees of fifth-leaf vee and tall spindle, fourth-leaf planar, and Syrah grapes that were seven-years-old grown on silt-loam soil, and fourteen-years-old grown on stoney soil were used to investigate how light interception (LI), leaf area index (LAI), yield and fruit quality differed among these orchard designs, and ultimately affected evapotranspiration during the 2019/20 season. </b></p><p>Frequency domain reflectometers measuring soil water content (SWC), and tensiometers (matric potential) were used to continuously measure the soil water balance and estimate crop evapotranspiration. Light interception (LI-COR, Lincoln, Nebraska, USA) and manual LAI readings were taken over four periods from budburst to full canopy. Fresh weight yield was extrapolated from a sample per tree/vine (n=30), maturity was measured by starch pattern index in apples, and quality was estimated from dry matter content (DMC%), and soluble solids content. Hourly ETo was computed using the FAO standardised Penman-Monteith equation, and data collected by an automated on-site weather station. ETc was estimated for ‘well-watered’ conditions using extrapolated daily light interception measurements, and compared with measured changes in SWC. </p><p>The apple trellis systems showed variation in LI (vee: 56%, tall spindle: 50%, planar: 36%), and LAI (vee: 3.2, tall spindle: 1.6, planar: 1.3). The vee system had the largest fresh weight yield in tonnes per hectare (vee: 141, tall spindle: 108, planar: 54). The different aged vines and soil type also showed variability in LI (young Syrah: 36%, old Syrah: 22%) and LAI (young Syrah: 1.3, old Syrah: 0.7). This variability was particularly obvious in the SWC results, where tall spindle showed the highest ETc and change in SWC, whereas planar and vee the lowest which was attributed to an ‘over-irrigated’ environment causing waterlogging, and ultimately decreasing transpiration, despite vee having the highest LI and LAI. Differences in orchard design and trellis system caused changes in ETc and soil water content which can be illustrated by light interception and LAI. However, this thesis demonstrated that soil and groundwater heterogeneity can cause significant variability in results which needs to be accounted for when modelling, irrigating and growing. Future work suggestions are the inclusion of transpiration measurements using sap flow meters to differentiate drainage and groundwater effects from ETc, and to further clarify when the trees/vines are being over-watered.</p>


Sign in / Sign up

Export Citation Format

Share Document