The effects of burn entry and burn severity on ponderosa pine and mixed conifer forests in Grand Canyon National Park

2015 ◽  
Vol 24 (4) ◽  
pp. 495 ◽  
Author(s):  
Anna M. Higgins ◽  
Kristen M. Waring ◽  
Andrea E. Thode

Over a century of fire exclusion in frequent-fire ponderosa pine and dry mixed conifer forests has resulted in increased tree densities, heavy surface fuel accumulations and an increase in late successional, fire-intolerant trees. Grand Canyon National Park uses prescribed fires and wildfires to reduce fire hazard and restore ecosystem processes. Research is needed to determine post-fire vegetation response thus enabling future forest succession predictions. Our study focussed on the effects of burn entry and burn severity on species composition and regeneration in two forest types: ponderosa pine with white fir encroachment and dry mixed conifer. We found no difference in tree composition and structure in a single, low-severity burn compared with unburned areas in the white fir encroachment forest type. We found no white fir seedlings or saplings in a second-entry, low-severity burn in the white fir encroachment forest type. Second-entry burns were effective in reducing white fir densities in the white fir encroachment forest type. There was significant aspen regeneration following high-severity fire in the dry mixed conifer forest type. This research suggests that repeated entries and an increase in burn severity may be necessary for prescribed fire or wildfire to be effective in meeting management objectives.

2014 ◽  
Vol 69 ◽  
pp. 242-250 ◽  
Author(s):  
Carolyn F. Weber ◽  
J. Scott Lockhart ◽  
Emily Charaska ◽  
Ken Aho ◽  
Kathleen A. Lohse

2004 ◽  
Vol 34 (6) ◽  
pp. 1332-1342 ◽  
Author(s):  
Rolf Gersonde ◽  
John J Battles ◽  
Kevin L O'Hara

The spatially explicit light model tRAYci was calibrated to conditions in multi-aged Sierra Nevada mixed-conifer forests. To reflect conditions that are important to growth and regeneration of this forest type, we sampled a variety of managed mature stands with multiple canopy layers and cohorts. Calibration of the light model included determining leaf area density for individual species with the use of leaf area – sapwood area prediction equations. Prediction equations differed between species and could be improved using site index. The light model predicted point measurements from hemispherical photographs well over a range of 27%–63% light. Simplifying the crown representation in the tRAYci model to average values for species and canopy strata resulted in little reduction in model performance and makes the model more useful to applications with lower sampling intensity. Vertical light profiles in managed mixed-conifer stands could be divided into homogeneous, sigmiodal, and continuous gradients, depending on stand structure and foliage distribution. Concentration of leaf area in the upper canopy concentrates light resources on dominant trees in continuous canopies. Irregular canopies of multiaged stands, however, provide more light resources to mid-size trees and could support growth of shade-intolerant species. Knowledge of the vertical distribution of light intensity in connection with stand structural information can guide regulation of irregular stand structures to meet forest management objectives.


Sign in / Sign up

Export Citation Format

Share Document