Short-term responses of tree squirrels to different-sized forest patches on new clearcuts in a fragmented forest landscape

2021 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Druscilla S. Sullivan
ZooKeys ◽  
2012 ◽  
Vol 176 ◽  
pp. 189-198 ◽  
Author(s):  
Karel Tajovsky ◽  
Jan Hosek ◽  
Jenyk Hofmeister ◽  
Jolanta Wytwer

2018 ◽  
Vol 10 (12) ◽  
pp. 4397 ◽  
Author(s):  
Yang Li ◽  
Chunyan Xue ◽  
Hua Shao ◽  
Ge Shi ◽  
Nan Jiang

The landscape patterns of urban forests not only reflect the influence of urbanization on urban forests, but also determines its function in urban ecosystem services. In the case of mastering the overall forest landscape pattern of a city, a study of the structure of urban forest landscapes at different scales and in urbanized regions is beneficial to a comprehensive understanding of the forest characteristics of a city. In the present study, an attempt was made to map and monitor the spatio-temporal dynamics of an urban forest in Shanghai from 2004 to 2014 using remote sensing techniques. Methods of landscape ecology analysis are followed to quantify the spatiotemporal patterns of an urban forest landscape by urban and rural gradient regionalization. The results show that the spatial structure of an urban forest landscape is essentially consistent with an urban landscape pattern. Due to strong interference from human activities, the ecological quality of forest landscapes is low. At the landscape level, the urban forest coverage rate increased from 11.43% in 2004 to 16.02% in 2014, however, the number of large patches decreased, there was a high degree of urban forest landscape fragmentation, landscape connectivity was poor, landscape patch boundaries were uniform, and weak links were present between ecological processes. Different urban and rural gradient division methods exhibit obvious gradient characteristics along the urban–rural gradient in Shanghai. The regional differences in the urban forest landscape ecological characteristics have further increased as a result of urban planning and zoning. The total amount of urban forest is located closer to the urban center, which has the smallest total amount of forest; however, in terms of urban forest coverage, the suburbs have more coverage than do the outer suburbs and the central urban areas. The urban forest landscape’s spatial distribution area is evidently different. Urbanization affects the areas closest to urban residential areas, which are markedly disturbed by humans, and the urban forest landscape has a high degree of fragmentation. The forest patches have become divided and unconnected, and the degree of natural connectivity has gradually decreased over the past 10 years. At the landscape class level, broadleaf forests are dominant in Shanghai, and their area exhibits an increasing trend; shrublands and needleleaf forests, however, show a decreasing trend. Compared with other forest types, the spatial distribution of broadleaf forest is concentrated in the suburbs, and the aggregation effect is relatively apparent. From the perspective of urban forest landscape pattern aggregation characteristics in Shanghai, the spatial distribution of urban forest landscape point patterns in the study area exhibit extremely uneven characteristics. The point density of urban forest patches larger than 1 ha in Shanghai increased from 2004 to 2014. However, the total number of patches with areas larger than 5 ha decreased, and this decrease plays an important role in the ecological environment. In the past 10 years, the concentration characteristics of urban forests with large patches has gradually decreased. In 2014, the urban forest landscapes decreased by 5 km compared to the intensity of aggregates in 2004, which also indicates that urban forests in Shanghai tend to be fragmented. The results of this study can be useful to help improve urban residents’ living environments and the sustainable development of the urban ecosystem, and they will also be vital to future management.


Sign in / Sign up

Export Citation Format

Share Document