scholarly journals Evidence from opsin genes rejects nocturnality in ancestral primates

2005 ◽  
Vol 102 (41) ◽  
pp. 14712-14716 ◽  
Author(s):  
Y. Tan ◽  
A. D. Yoder ◽  
N. Yamashita ◽  
W.-H. Li
Keyword(s):  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tarang K. Mehta ◽  
Christopher Koch ◽  
Will Nash ◽  
Sara A. Knaack ◽  
Padhmanand Sudhakar ◽  
...  

Abstract Background Seminal studies of vertebrate protein evolution speculated that gene regulatory changes can drive anatomical innovations. However, very little is known about gene regulatory network (GRN) evolution associated with phenotypic effect across ecologically diverse species. Here we use a novel approach for comparative GRN analysis in vertebrate species to study GRN evolution in representative species of the most striking examples of adaptive radiations, the East African cichlids. We previously demonstrated how the explosive phenotypic diversification of East African cichlids can be attributed to diverse molecular mechanisms, including accelerated regulatory sequence evolution and gene expression divergence. Results To investigate these mechanisms across species at a genome-wide scale, we develop a novel computational pipeline that predicts regulators for co-extant and ancestral co-expression modules along a phylogeny, and candidate regulatory regions associated with traits under selection in cichlids. As a case study, we apply our approach to a well-studied adaptive trait—the visual system—for which we report striking cases of network rewiring for visual opsin genes, identify discrete regulatory variants, and investigate their association with cichlid visual system evolution. In regulatory regions of visual opsin genes, in vitro assays confirm that transcription factor binding site mutations disrupt regulatory edges across species and segregate according to lake species phylogeny and ecology, suggesting GRN rewiring in radiating cichlids. Conclusions Our approach reveals numerous novel potential candidate regulators and regulatory regions across cichlid genomes, including some novel and some previously reported associations to known adaptive evolutionary traits.


2015 ◽  
Vol 24 (18) ◽  
pp. 4679-4696 ◽  
Author(s):  
S. E. Sander ◽  
D. W. Hall
Keyword(s):  

2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


Author(s):  
Jessica C. Gardner ◽  
Tom R. Webb ◽  
Naheed Kanuga ◽  
Anthony G. Robson ◽  
Graham E. Holder ◽  
...  

Author(s):  
Zuzana Musilova ◽  
Walter Salzburger ◽  
Fabio Cortesi

Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Gene ◽  
2005 ◽  
Vol 352 ◽  
pp. 82-91 ◽  
Author(s):  
Kenji Nagao ◽  
Naomi Takenaka ◽  
Momoki Hirai ◽  
Shoji Kawamura

2008 ◽  
Vol 74 (2) ◽  
pp. 314-321 ◽  
Author(s):  
Taeko MIYAZAKI ◽  
Jun KOHBARA ◽  
Kenji TAKII ◽  
Yasunori ISHIBASHI ◽  
Hidemi KUMAI

Sign in / Sign up

Export Citation Format

Share Document