scholarly journals Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata

2011 ◽  
Vol 108 (6) ◽  
pp. 2322-2327 ◽  
Author(s):  
J. D. Hollister ◽  
L. M. Smith ◽  
Y.-L. Guo ◽  
F. Ott ◽  
D. Weigel ◽  
...  
2017 ◽  
Author(s):  
Seth Polydore ◽  
Michael J. Axtell

SummaryPlant small RNAs regulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. sRNAs fall into two major categories: those that are reliant on RNA Dependent RNA Polymerases (RDRs) for biogenesis and those that aren’t. Known RDR-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR-independent sRNAs are primarily microRNAs and other hairpin-derived sRNAs. In this study, we produced and analyzed small RNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. Only a small fraction of all sRNA loci were RDR1/RDR2/RDR6-independent; most of these were microRNA loci or associated with predicted hairpin precursors. We found 58 previously annotated microRNA loci that were reliant on RDR1, −2, or −6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent small RNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for small RNA biogenesis. These 38 small RNA-producing loci have novel biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggest that these 38 loci represent one or more new types of small RNAs in Arabidopsis thaliana.Significance StatementSmall RNAs regulate gene expression in plants and are produced through a variety of previously-described mechanisms. Here, we examine a set of previously undiscovered small RNA-producing loci that are produced by novel mechanisms.


Sign in / Sign up

Export Citation Format

Share Document