scholarly journals Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize

2014 ◽  
Vol 111 (14) ◽  
pp. 5141-5146 ◽  
Author(s):  
A. J. Gassmann ◽  
J. L. Petzold-Maxwell ◽  
E. H. Clifton ◽  
M. W. Dunbar ◽  
A. M. Hoffmann ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242791
Author(s):  
Yong Yin ◽  
Stanislaw Flasinski ◽  
William Moar ◽  
David Bowen ◽  
Cathy Chay ◽  
...  

The Western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is one of the most economically important insect pests in North America. Since 2003, transgenic maize expressing WCR-active proteins from Bacillus thuringiensis (Bt) have been widely adopted as the main approach to controlling WCR in the U.S. However, the emergence of field resistance to the Bt proteins in current commercial products has been documented in recent years, highlighting the need to develop additional tools for controlling this devasting pest. Here we report the discovery of Vpb4Da2 (initially assigned as Vip4Da2), a new insecticidal protein highly selective against WCR, through high-throughput genome sequencing of a Bt strain sourced from grain dust samples collected in the eastern and central regions of the US. Vpb4Da2 contains a sequence and domain signature distinct from families of other WCR-active proteins. Under field conditions, transgenic maize expressing Vpb4Da2 demonstrates commercial-level (at or below NIS 0.25) root protection against WCR, and reduces WCR beetle emergence by ≥ 97%. Our studies also conclude that Vpb4Da2 controls WCR populations that are resistant to WCR-active transgenic maize expressing Cry3Bb1, Cry34Ab1/Cry35Ab1 (reassigned as Gpp34Ab1/Tpp35Ab1), or DvSnf7 RNA. Based on these findings, Vpb4Da2 represents a valuable new tool for protecting maize against WCR.


2019 ◽  
Vol 76 (1) ◽  
pp. 268-276 ◽  
Author(s):  
Aaron J Gassmann ◽  
Ram B Shrestha ◽  
Abigail L Kropf ◽  
Coy R St Clair ◽  
Ben D Brenizer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xu Hu ◽  
Chad J. Boeckman ◽  
Bin Cong ◽  
Joe P. Steimel ◽  
Nina M. Richtman ◽  
...  

Abstract Transgenic maize plants expressing dsRNA targeting western corn rootworm (WCR, Diabrotica virgifera virgifera) DvSSJ1 mRNA, a Drosophila snakeskin (ssk) ortholog, show insecticidal activity and significant plant protection from WCR damage. The gene encodes a membrane protein associated with the smooth sepate junction (SSJ) which is required for intestinal barrier function. To understand the active RNA form that leads to the mortality of WCR larvae by DvSSJ1 RNA interference (RNAi), we characterized transgenic plants expressing DvSSJ1 RNA transcripts targeting WCR DvSSJ1 mRNA. The expression of the silencing cassette results in the full-length transcript of 901 nucleotides containing a 210 bp inverted fragment of the DvSSJ1 gene, the formation of a double-stranded RNA (dsRNA) transcript and siRNAs in transgenic plants. Our artificial diet-feeding study indicates that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for DvSSJ1 insecticidal activity. Impact of specificity of dsRNA targeting DvSSJ1 mRNA on insecticidal activities was also evaluated in diet bioassay, which showed a single nucleotide mutation can have a significant impact or abolish diet activities against WCR. These results provide insights as to the functional forms of plant-delivered dsRNA for the protection of transgenic maize from WCR feeding damage and information contributing to the risk assessment of transgenic maize expressing insecticidal dsRNA.


2013 ◽  
Vol 106 (6) ◽  
pp. 2506-2513 ◽  
Author(s):  
Daniel L. Frank ◽  
Anthony Zukoff ◽  
Julie Barry ◽  
Matthew L. Higdon ◽  
Bruce E. Hibbard

Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 162 ◽  
Author(s):  
Jingtong Hou ◽  
Ruth Cong ◽  
Michi Izumi-Willcoxon ◽  
Hana Ali ◽  
Yi Zheng ◽  
...  

A novel Bacillus thuringiensis Cry protein, Cry8Hb, active against Diabrotica virgifera virgifera (Western corn rootworm, WCRW) was discovered. Unexpectedly, the anti-rootworm activity of the Cry8Hb toxin was enhanced significantly by fusing Escherichia coli maltose binding protein (MBP) to this Cry toxin. While the exact mechanism of the activity enhancement remains indefinite, it is probable that the enhancement is a result of increased solubility of the MBP-Cry8Hb fusion in the rootworm midgut. This hypothesis was examined using a synthetic Cry3 protein called IP3-1, which was not soluble at a neutral pH like Cry8Hb and marginally active to WCRW. When IP3-1 was fused to MBP, its anti-WCRW activity was enhanced 13-fold. To further test the hypothesis, DNA shuffling was performed on IP3-1 to increase the solubility without MBP. Screening of shuffled libraries found six new IP3 variants showing very high anti-WCRW activity without MBP. Sequence and 3D structure analysis of those highly active, shuffled IP3 variants revealed several charge-altering mutations such as Lys to Glu on the putative MBP-attaching side of the IP3 molecule. It is likely that those mutations make the protein acidic to substitute the functions of MBP including enhancing the solubility of IP3 at a neutral pH.


2010 ◽  
Vol 103 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
Bruce E. Hibbard ◽  
Thomas L. Clark ◽  
Mark R. Ellersieck ◽  
Lisa N. Meihls ◽  
Ahmed A. El Khishen ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53079 ◽  
Author(s):  
Huarong Li ◽  
Monica Olson ◽  
Gaofeng Lin ◽  
Timothy Hey ◽  
Sek Yee Tan ◽  
...  

Author(s):  
David Bowen ◽  
Yong Yin ◽  
Stanislaw Flasinski ◽  
Catherine Chay ◽  
Gregory Bean ◽  
...  

This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits. IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.


Sign in / Sign up

Export Citation Format

Share Document