diabrotica virgifera
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 55)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Joseph L Spencer ◽  
Timothy R Mabry ◽  
Eli Levine ◽  
Scott A Isard

Abstract Western corn rootworm, Diabrotica virgifera virgifera LeConte, biology is tied to the continuous availability of its host (corn, Zea mays L.). Annual rotation of corn with a nonhost, like soybean (Glycine max (L.) Merrill) was a reliable tactic to manage western corn rootworm. Behavioral resistance to annual crop rotation (rotation resistance) allowed some eastern U.S. Corn Belt populations to circumvent rotation by laying eggs in soybean and in cornfields. When active in soybean, rotation-resistant adults commonly consume foliage, in spite of detrimental effects on beetle survival. Rotation-resistant beetle activity in soybean is enabled by the expression of certain proteinases and an adapted gut microbiota that provide limited protection from soybean antiherbivore defenses. We investigated the effects of corn and soybean herbivory on rotation-resistant female survival and initiation of flight using mortality assays and wind tunnel flight tests. Among field-collected females tested with mortality assays, beetles from collection sites in a cornfield survived longer than those from collection sites in a soybean field. However, reduced survival due to soybean herbivory could be restored by consuming corn tissues. Field-collected beetles that fed on a soybean tissue laboratory diet or only water were more likely to fly in a wind tunnel than corn-feeding beetles. Regardless of collection site and laboratory diet, 90.5% of beetles that flew oriented their flights upwind. Diet-related changes in the probability of flight provide a proximate mechanism for interfield movement that facilitates restorative feeding and the survival of females previously engaged in soybean herbivory. Rotation-resistant western corn rootworm females feeding on soybean tissues experience reduced survival in mortality assays and display increased flight probability (which may facilitate flight back to a cornfield where consumption of host tissues improves survival potential and facilitates maturation of eggs). The consequences of soybean herbivory provide a proximal mechanism for behavioral resistance to crop rotation. Increased egg-laying probability while feeding on soybean tissues, facilitation of egg maturation while feeding on corn tissues, and interfield movement are previously documented consequences.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 783
Author(s):  
Man P. Huynh ◽  
Adriano E. Pereira ◽  
Ryan W. Geisert ◽  
Michael G. Vella ◽  
Thomas A. Coudron ◽  
...  

The western corn rootworm (WCR), Diabrotica virgifera LeConte, is the most serious pest of maize in the United States. In pursuit of developing a diet free of antibiotics for WCR, we characterized effects of thermal exposure (50–141 °C) and length of exposure on quality of WCRMO-2 diet measured by life history parameters of larvae (weight, molting, and survival) reared on WCRMO-2 diet. Our results indicated that temperatures had non-linear effects on performance of WCRMO-2 diet, and no impacts were observed on the length of time exposure. The optimum temperature of diet processing was 60 °C for a duration less than 30 min. A significant decline in development was observed in larvae reared on WCRMO-2 diet pretreated above 75 °C. Exposing WCRMO-2 diet to high temperatures (110–141 °C) even if constrained for brief duration (0.9–2.3 s) caused 2-fold reduction in larval weight and significant delays in larval molting but no difference in survival for 10 days compared with the control diet prepared at 65 °C for 10 min. These findings provide insights into the effects of thermal exposure in insect diet processing.


Acarologia ◽  
2021 ◽  
Vol 61 (3) ◽  
pp. 577-580
Author(s):  
Antoine Pasquier ◽  
Thibault Andrieux ◽  
Paloma Martinez-Rodiguez ◽  
Elodie Vercken ◽  
Maxime Ferrero

The western corn rootworm Diabrotica virgifera virgifera (WCR), and the wireworm Agriotes sordidus (WW), whose eggs and first instar larvae develop in the first few centimeters of soil, are major crop pests. As soil-dwelling predatory mites are known as potential biocontrol agents against many pests, we investigated the predation capacity of Stratiolaelaps scimitus, Gaeolaelaps aculeifer and Macrocheles robustulus on immature stages of WCR and WW in a laboratory setting. While eggs of WCR and WW were never consumed, all three predator species attacked both WCR and WW first instar larvae. While these results need to be confirmed in natural conditions, our work identifies the early larval stage instead of the egg stage as the most vulnerable stage for control against WCR and WW with soil-dwelling predatory mites.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Stefan Toepfer ◽  
Szabolcs Toth ◽  
Mark Szalai

Abstract Background Due to recent bans on the use of several soil insecticides and insecticidal seed coatings, soil-dwelling insect pests are increasingly difficult to manage. One example is the western corn rootworm (Diabrotica virgifera virgifera, Coleoptera: Chrysomelidae), a serious root-feeder of maize (Zea mays). We investigated whether the less problematic botanical azadirachtin, widely used against above-ground insects, could become an option for the control of this soil insect pest. Methods Artificial diet-based bioassays were implemented under standard laboratory conditions to establish dose response curves for the pest larvae. Then, potted-plant experiments were implemented in greenhouse to assess feasibility and efficacy of a novel granular formulation of azadirachtin under more natural conditions and in relation to standard insecticides. Results Bioassays in three repetitions revealed a 3-day LD50 of 22.3 µg azadirachtin/ml which corresponded to 0.45 µg/neonate of D. v. virgifera and a 5-day LD50 of 19.3 µg/ml or 0.39 µg/first to second instar larva. No sublethal effects were observed. The three greenhouse experiments revealed that the currently proposed standard dose of a granular formulation of 38 g azadirachtin/hectare for in-furrow application at sowing is not enough to control D. v. virgifera or to prevent root damage. At 10× standard-dose total pest control was achieved as well as the prevention of most root damage. This was better than the efficacy achieved by cypermethrin-based granules and comparable to tefluthrin-granules, or thiamethoxam seed coatings. The ED50 for suppressing larval populations were estimated at 92 g azadirachtin/ha, for preventing heavy root damage 52 g/ha and for preventing general root damage 220 g/ha. Conclusions There seems clear potential for the development of neem-based botanical soil insecticides for arable crops such as maize. They might become, if doses are increased and more soil insecticides phased out, a promising, safer solution as part of the integrated pest management toolkit against soil insects.


2021 ◽  
pp. 3-7
Author(s):  
M. Prokopiak ◽  
L. Bezmenska ◽  
N. Paltsan ◽  
H. Holinei ◽  
О. Mayorova

Goal. To analyze the distribution of the Western Corn Rootworm (Diabrotica virgifera virgifera Le Conte) in the Ternopil region during 2016—2020. Methods. To generalize the results of phytosanitary monitoring of the spread of the regulated harmful organism on the territory of Ukraine and on the territory of Ternopil region according to the data provided by The Department of Phytosanitary Safety of Main Administration of State Service of Ukraine on Food Safety and Consumer Protection (SSUFSCP) in Ternopil region. Results. In 2019 the area of D. virgifera virgifera distribution in Ukraine has increased 1.4 times compared to 2016, and the area of its distribution has expanded. Since D. virgifera virgifera was registered in the Ternopil region, the area of affected has increased by approximately 100 hectares per each year. The average annual temperature apparently contributed to the adaptation and the spread of D. virgifera virgifera throughout the region in 2016—2020, and the winter temperature were suitable for the wintering of the eggs. Conclusions. The western corn rootworm belongs to the quarantine organisms. It needs the use all phytosanitary measures for the containment and restriction of its distribution in the territory of the Ternopil region. According to the average spread of this pest (40—50 km/ year), the further expansion of its population in other regions of Ukraine is predicted. The climatic conditions in the Ternopil region and the available fodder base will promote the development of D. virgifera virgifera.


Author(s):  
Jinwon Kim ◽  
Ivan Hiltpold ◽  
Geoffrey Jaffuel ◽  
Ilham Sbaiti ◽  
Bruce E. Hibbard ◽  
...  

AbstractEntomopathogenic nematodes (EPN) have great potential as biological control agents against root-feeding insects. They have a rapid and long-lasting mode of action, minimal adverse effects on the environment and can be readily mass-produced. However, they have a relatively short shelf-life and are susceptible to desiccation and UV light. These shortcomings may be overcome by encapsulating EPN in Ca2+-alginate hydrogels, which have been shown to provide a humid and UV protective shelter. Yet, current Ca2+-alginate formulations do not keep EPN vigorous and infectious for a prolonged period of time and do not allow for their controlled release upon application. Here, we introduce solid Ca2+-alginate beads which we supplemented with glycerol to better retain the EPN during storage and to ensure a steady release when applied in soil. Glycerol-induced metabolic arrest in EPN (Heterorhabditis bacteriophora) resulting in quiescence and total retainment of EPN when added to beads made with 0.5% sodium alginate and 2% CaCl2·2H2O solutions. More than 4,000 EPN could be embedded in a single 4–5-mm diameter bead, and quiescence could be broken by adding water, after which the EPN readily emerged from the beads. In a field trial, the EPN beads were as effective in reducing root damage by the western corn rootworm (WCR, Diabrotica virgifera virgifera) as EPN that were applied in water. Although further improvements are desirable, we conclude that Ca2+-alginate beads can provide an effective and practical way to apply EPN for the control of WCR larvae.


Sign in / Sign up

Export Citation Format

Share Document