cry toxin
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 2)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. U. Khan ◽  
S. Ali ◽  
S. H. Shah ◽  
M. A. Zia ◽  
S. Shoukat ◽  
...  

Abstract Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009917
Author(s):  
Zhaojiang Guo ◽  
Shi Kang ◽  
Qingjun Wu ◽  
Shaoli Wang ◽  
Neil Crickmore ◽  
...  

Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009463
Author(s):  
Waruntorn Luangtrakul ◽  
Pakpoom Boonchuen ◽  
Phattarunda Jaree ◽  
Ramya Kumar ◽  
Han-Ching Wang ◽  
...  

Acute hepatopancreatic necrosis disease (AHPND) caused by PirABVP-producing strain of Vibrio parahaemolyticus, VPAHPND, has seriously impacted the shrimp production. Although the VPAHPND toxin is known as the VPAHPND virulence factor, a receptor that mediates its action has not been identified. An in-house transcriptome of Litopenaeus vannamei hemocytes allows us to identify two proteins from the aminopeptidase N family, LvAPN1 and LvAPN2, the proteins of which in insect are known to be receptors for Cry toxin. The membrane-bound APN, LvAPN1, was characterized to determine if it was a VPAHPND toxin receptor. The increased expression of LvAPN1 was found in hemocytes, stomach, and hepatopancreas after the shrimp were challenged with either VPAHPND or the partially purified VPAHPND toxin. LvAPN1 knockdown reduced the mortality, histopathological signs of AHPND in the hepatopancreas, and the number of virulent VPAHPND bacteria in the stomach after VPAHPND toxin challenge. In addition, LvAPN1 silencing prevented the toxin from causing severe damage to the hemocytes and sustained both the total hemocyte count (THC) and the percentage of living hemocytes. We found that the rLvAPN1 directly bound to both rPirAVP and rPirBVP toxins, supporting the notion that silencing of LvAPN1 prevented the VPAHPND toxin from passing through the cell membrane of hemocytes. We concluded that the LvAPN1 was involved in AHPND pathogenesis and acted as a VPAHPND toxin receptor mediating the toxin penetration into hemocytes. Besides, this was the first report on the toxic effect of VPAHPND toxin on hemocytes other than the known target tissues, hepatopancreas and stomach.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Vinod K. Chauhan ◽  
Narender K. Dhania ◽  
Vadthya Lokya ◽  
Bhoopal Bhuvanachandra ◽  
Kollipara Padmasree ◽  
...  

Author(s):  
Alejandro I Del Pozo-Valdivia ◽  
Dominic D Reisig ◽  
Lewis Braswell ◽  
Jeremy K Greene ◽  
Phillip Roberts ◽  
...  

Abstract Thresholds for Helicoverpa zea (Boddie) in cotton Gossypium hirsutum L. have been understudied since the widespread adoption of Bt cotton in the United States. Our study was possible due to the widespread presence of H. zea populations with Cry-toxin resistance. We initiated progressive spray timing experiments using three Bt cotton brands (Deltapine, Stoneville, and Phytogen) widely planted across the U.S. Cotton Belt expressing pyramided toxins in the Cry1A, Cry2, and Vip3Aa19 families. We timed foliar insecticide treatments based on week of bloom to manipulate H. zea populations in tandem with crop development during 2017 and 2018. We hypothesized that non-Bt cotton, cotton expressing Cry toxins alone, and cotton expressing Cry and Vip3Aa19 toxins would respond differently to H. zea feeding. We calculated economic injury levels to support the development of economic thresholds from significant responses. Pressure from H. zea was high during both years. Squares and bolls damaged by H. zea had the strongest negative yield associations, followed by larval number on squares. There were fewer yield associations with larval number on bolls and with number of H. zea eggs on the plant. Larval population levels were very low on varieties expressing Vip3Aa19. Yield response varied across experiments and varieties, suggesting that it is difficult to pinpoint precise economic injury levels. Nonetheless, our results generally suggest that current economic thresholds for H. zea in cotton are too high. Economic injury levels from comparisons between non-Bt varieties and those expressing only Cry toxins could inform future thresholds once H. zea evolves resistance to Vip3Aa19.


2021 ◽  
Vol 171 ◽  
pp. 104728
Author(s):  
Yongbo Yang ◽  
Xiaoying Huang ◽  
Wanli Yuan ◽  
Yang Xiang ◽  
Xueqin Guo ◽  
...  

Author(s):  
Nancy Fayad ◽  
Zakaria Kambris ◽  
Laure El Chamy ◽  
Jacques Mahillon ◽  
Mireille Kallassy Awad

Bacillus thuringiensis emerged as a major bioinsecticide on the global market. It offers a valuable alternative to chemical products classically utilized to control pest insects. Despite the efficiency of several strains and products available on the market, the scientific community is always on the lookout for novel toxins that can replace or supplement the existing products. In this study, H3, a novel B. thuringiensis strain showing mosquitocidal activity, was isolated from Lebanese soil and characterized at an in vivo, genomic and proteomic levels. H3 parasporal crystal is toxic on its own but displays an unusual killing profile with a higher LC50 than the reference B. thuringiensis serovar israelensis crystal proteins. In addition, H3 has a different toxicity order: it is more toxic to Aedes albopictus and Anopheles gambiae than to Culex pipiens. Whole genome sequencing and crystal analysis revealed that H3 can produce eleven novel Cry proteins, eight of which are assembled in genes with an orf1-gap-orf2 organization, where orf2 is a potential Cry4-type crystallization domain. Moreover, pH3-180, the toxin-carrying plasmid, holds a wide repertoire of mobile genetic elements that amount to ca. 22% of its size., including novel insertion sequences and class II transposable elements Two other large plasmids present in H3 carry genetic determinants for the production of many interesting molecules - such as chitinase, cellulase and bacitracin - that may add up to H3 bioactive properties. This study therefore reports a novel mosquitocidal Bacillus thuringiensis strain with unusual Cry toxin genes in a rich mobile DNA environment. IMPORTANCE Bacillus thuringiensis, a soil entomopathogenic bacteria, is at the base of many sustainable eco-friendly bio-insecticides. Hence stems the need to continually characterize insecticidal toxins. H3 is an anti-dipteran B. thuringiensis strain, isolated from Lebanese soil, whose parasporal crystal contains eleven novel Cry toxins and no Cyt toxins. In addition to its individual activity, H3 showed potential as a co-formulant with classic commercialized B. thuringiensis products, to delay the emergence of resistance and to shorten the time required for killing. On a genomic level, H3 holds three large plasmids, one of which carries the toxin-coding genes, with four occurrences of the distinct orf1-gap-orf2 organization. Moreover, this plasmid is extremely rich in mobile genetic elements, unlike its two co-residents. This highlights the important underlying evolutionary traits between toxin-carrying plasmids and the adaptation of a B. thuringiensis strain to its environment and insect host spectrum.


2020 ◽  
Author(s):  
Carrie Deans ◽  
Gregory Sword ◽  
Spencer Behmer ◽  
Eric Burkness ◽  
Marianne Pusztai-Carey ◽  
...  

AbstractGiven that plant nutrient content is both spatially and temporally dynamic (Lenhart et al., 2015; Deans et al., 2016, 2018), insect herbivores are exposed to an incredible amount of nutritional variability. This variability can constrain insects to feeding on sub-optimal resources, but it can also provide an opportunity for insects to regulate their intake of specific nutrients to obtain an optimal balance. Nutrient regulation has implications for pest control strategies in agricultural systems, as the nutritional state of pest species may impact their susceptibility to insecticides. Deans et al. (2017) showed that diet macronutrient balance has significant effects on the susceptibility of Helicoverpa zea larvae to Cry1Ac, an endotoxin expressed in transgenic Bt crops. This was demonstrated using a highly inbred laboratory strain of H. zea, limiting the applicability of these results to field populations that encompass greater genetic diversity. In this study, we assessed the impact of field-relevant macronutrient variability on the efficacy of two Bt endotoxins, Cry1Ab and Cry1Ac, using three field populations collected from different geographic regions. This was done to further understand the impact of nutritional variability on Bt susceptibility and also to determine the relevance of these effects in the field. While we saw limited differences in Cry susceptibility across populations, dietary effects were highly variable. Across populations there were distinct population-level differences in the interactions between Cry concentration and diet, the type of Cry toxin impacted by diet, and the treatment diet that produced optimal survival and performance. These results show that nutrition can have strong impacts on Bt susceptibility but also that these impacts are strongly affected by genetic background in H. zea. To accurately assess Bt susceptibility in the field, including resistance monitoring, bioassay methods should incorporate the appropriate nutritional parameters and be as localized as possible.


2020 ◽  
Author(s):  
Megan L. Fritz ◽  
Kelly A. Hamby ◽  
Katherine Taylor ◽  
Alexandra M. DeYonke ◽  
Fred Gould

AbstractReplacement of synthetic insecticides with transgenic crops for pest management has been both economically and environmentally beneficial. These benefits have often eroded as pests evolved resistance to the transgenic crops, but a broad understanding of the timing and complexity of the adaptive changes which lead to field-evolved resistance in pest species is lacking. Wild populations of Helicoverpa zea, a major lepidopteran crop pest and the target of transgenic Cry toxin-expressing cotton and corn, have recently evolved widespread, damaging levels of resistance. Here, we quantified patterns of genomic change in wild H. zea collected between 2002 and 2017 when adoption rates of Cry-expressing crops expanded in North America. Using a combination of genomic and genotypic approaches, we identified significant temporal changes in allele frequency throughout the genomes of field-collected H. zea. Many of these changes occurred concurrently with increasingly damaging levels of resistance to Cry toxins between 2012 and 2016, in a pattern consistent with polygenic selection. Surprisingly, none of the eleven previously described Cry resistance genes showed signatures of selection in wild H. zea. Furthermore, we observed evidence of a very strong selective sweep in one region of the H. zea genome, yet this strongest change was not additively associated with Cry resistance. This first, whole genome analysis of field-collected specimens to study evolution of Cry resistance demonstrates the potential and need for a more holistic approach to examining pest adaptation to changing agricultural practices.


Sign in / Sign up

Export Citation Format

Share Document