scholarly journals Early signaling dynamics of the epidermal growth factor receptor

2016 ◽  
Vol 113 (11) ◽  
pp. 3114-3119 ◽  
Author(s):  
Raven J. Reddy ◽  
Aaron S. Gajadhar ◽  
Eric J. Swenson ◽  
Daniel A. Rothenberg ◽  
Timothy G. Curran ◽  
...  

Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology.

1994 ◽  
Vol 14 (1) ◽  
pp. 509-517
Author(s):  
W Li ◽  
R Nishimura ◽  
A Kashishian ◽  
A G Batzer ◽  
W J Kim ◽  
...  

Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.


Biochemistry ◽  
1996 ◽  
Vol 35 (36) ◽  
pp. 11852-11864 ◽  
Author(s):  
Kevin H. Thornton ◽  
W. Tom Mueller ◽  
Patrick McConnell ◽  
Guochang Zhu ◽  
Alan R. Saltiel ◽  
...  

2020 ◽  
Vol 36 (1) ◽  
pp. 359-383 ◽  
Author(s):  
Aneta Koseska ◽  
Philippe I.H. Bastiaens

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.


2008 ◽  
Vol 51 (23) ◽  
pp. 7459-7468 ◽  
Author(s):  
Alessio Giubellino ◽  
Zhen-Dan Shi ◽  
Lisa M. Miller Jenkins ◽  
Karen M. Worthy ◽  
Lakshman K. Bindu ◽  
...  

2001 ◽  
Vol 153 (3) ◽  
pp. 599-612 ◽  
Author(s):  
Miho Matsuda ◽  
Hugh F. Paterson ◽  
Rosie Rodriguez ◽  
Amanda C. Fensome ◽  
Moira V. Ellis ◽  
...  

The translocation of fluorescently tagged PLCγ and requirements for this process in cells stimulated with EGF were analyzed using real time fluorescence microscopy applied for the first time to monitor growth factor receptor–effector interactions. The translocation of PLCγ to the plasma membrane required the functional Src homology 2 domains and was not affected by mutations in the pleckstrin homology domain or inhibition of phosphatidylinositol (PI) 3-kinase. An array of domains specific for PLCγ isoforms was sufficient for this translocation. The dynamics of translocation to the plasma membrane and redistribution of PLCγ, relative to localization of the EGF receptor and PI 4,5-biphosphate (PI 4,5-P2), were shown. Colocalization with the receptor was observed in the plasma membrane and in membrane ruffles where PI 4,5-P2 substrate could also be visualized. At later times, internalization of PLCγ, which could lead to separation from the substrate, was observed. The data support a direct binding of PLCγ to the receptor as the main site of the plasma membrane recruitment. The presence of PLCγ in membrane structures and its access to the substrate appear to be transient and are followed by a rapid incorporation into intracellular vesicles, leading to downregulation of the PLC activity.


2007 ◽  
Vol 67 (13) ◽  
pp. 6012-6016 ◽  
Author(s):  
Alessio Giubellino ◽  
Yang Gao ◽  
Sunmin Lee ◽  
Min-Jung Lee ◽  
James R. Vasselli ◽  
...  

2003 ◽  
Vol 14 (9) ◽  
pp. 3519-3528 ◽  
Author(s):  
Laura A. Maile ◽  
Jane Badley-Clarke ◽  
David R. Clemmons

Growth factor signaling is usually analyzed in isolation without considering the effect of ligand occupancy of transmembrane proteins other than the growth factor receptors themselves. In smooth muscle cells, the transmembrane protein Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) has been shown to be an important regulator of insulin-like growth factor-I (IGF-I) signaling. SHPS-1 is phosphorylated in response to IGF-I, leading to recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2). Subsequently, SHP-2 is transferred to IGF-I receptor and regulates the duration of IGF-I receptor phosphorylation. Whether ligand occupancy of SHPS-1 influences SHPS-1 phosphorylation or SHP-2 recruitment, thereby altering growth factor signaling, is unknown. Previous studies have shown that integrin associated protein (IAP) associates with SHPS-1. We undertook these studies to determine whether this interaction controlled SHPS-1 phosphorylation and/or SHP-2 recruitment and thereby regulated IGF-I signaling. Disruption of IAP-SHPS-1 binding, by using an IAP monoclonal antibody or cells expressing mutant forms of IAP that did not bind to SHPS-1, inhibited IGF-I–stimulated SHPS-1 phosphorylation and SHP-2 recruitment. This was associated with a lack of SHP-2 transfer to IGF-I receptor and sustained receptor phosphorylation. This resulted in an inability of IGF-I to stimulate sustained mitogen-activated protein kinase activation, cell proliferation, and cell migration. The effect was specific for IGF-I because disruption of the IAP–SHPS-1 interaction had no effect on platelet-derived growth factor-stimulated SHPS-1 phosphorylation or cell migration. In summary, our results show that 1) ligand occupancy of SHPS-1 is a key determinant of its ability to be phosphorylated after IGF-I stimulation, and 2) the interaction between IAP and SHPS-1 is an important regulator of IGF-I signaling because disruption of the results in impaired SHP-2 recruitment and subsequent inhibition of IGF-I–stimulated cell proliferation and migration.


Sign in / Sign up

Export Citation Format

Share Document