scholarly journals A bacterial Argonaute with noncanonical guide RNA specificity

2016 ◽  
Vol 113 (15) ◽  
pp. 4057-4062 ◽  
Author(s):  
Emine Kaya ◽  
Kevin W. Doxzen ◽  
Kilian R. Knoll ◽  
Ross C. Wilson ◽  
Steven C. Strutt ◽  
...  

Eukaryotic Argonaute proteins induce gene silencing by small RNA-guided recognition and cleavage of mRNA targets. Although structural similarities between human and prokaryotic Argonautes are consistent with shared mechanistic properties, sequence and structure-based alignments suggested that Argonautes encoded within CRISPR-cas [clustered regularly interspaced short palindromic repeats (CRISPR)-associated] bacterial immunity operons have divergent activities. We show here that the CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-hydroxylated guide RNAs rather than the 5′-phosphorylated guides used by all known Argonautes. The 2.0-Å resolution crystal structure of an MpAgo–RNA complex reveals a guide strand binding site comprising residues that block 5′ phosphate interactions. Using structure-based sequence alignment, we were able to identify other putative MpAgo-like proteins, all of which are encoded within CRISPR-cas loci. Taken together, our data suggest the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide.

2020 ◽  
Author(s):  
Mi Seul Park ◽  
GeunYoung Sim ◽  
Audrey C. Kehling ◽  
Kotaro Nakanishi

AbstractRNA interfering is a eukaryote-specific gene silencing by 20∼23 nucleotide (nt) microRNAs and small interfering RNAs that recruit Argonaute proteins to complementary RNAs for degradation. In humans, Argonaute2 (AGO2) has been known as the only slicer while Argonaute3 (AGO3) barely cleaves RNAs. Therefore, the intrinsic slicing activity of AGO3 remains controversial and a long-standing question. Here, we report 14-nt 3′ end-shortened variants of let-7a, miR-27a, and specific miR-17-92 families that make AGO3 an extremely competent slicer by an ∼ 82-fold increase in target cleavage. These RNAs, named cleavage-inducing tiny guide RNAs (cityRNAs), conversely lower the activity of AGO2, demonstrating that AGO2 and AGO3 have different optimum guide lengths for target cleavage. Our study sheds light on the role of tiny guide RNAs.


2008 ◽  
Vol 49 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Atsushi Takeda ◽  
Shintaro Iwasaki ◽  
Toshiaki Watanabe ◽  
Maki Utsumi ◽  
Yuichiro Watanabe

2020 ◽  
Vol 117 (46) ◽  
pp. 28576-28578
Author(s):  
Mi Seul Park ◽  
GeunYoung Sim ◽  
Audrey C. Kehling ◽  
Kotaro Nakanishi

RNA interfering is a eukaryote-specific gene silencing by 20∼23-nucleotide (nt) microRNAs and small interfering RNAs that recruit Argonaute proteins to complementary RNAs for degradation. In humans, Argonaute2 (AGO2) has been known as the only slicer while Argonaute3 (AGO3) barely cleaves RNAs. Therefore, the intrinsic slicing activity of AGO3 remains controversial and a long-standing question. Here, we report 14-nt 3′ end-shortened variants of let-7a, miR-27a, and specific miR-17–92 families that make AGO3 an extremely competent slicer, increasing target cleavage up to ∼82-fold in some instances. These RNAs, named cleavage-inducing tiny guide RNAs (cityRNAs), conversely lower the activity of AGO2, demonstrating that AGO2 and AGO3 have different optimum guide lengths for target cleavage. Our study sheds light on the role of tiny guide RNAs.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Daniela Dimastrogiovanni ◽  
Kathrin S Fröhlich ◽  
Katarzyna J Bandyra ◽  
Heather A Bruce ◽  
Susann Hohensee ◽  
...  

Bacterial small RNAs (sRNAs) are key elements of regulatory networks that modulate gene expression. The sRNA RydC of Salmonella sp. and Escherichia coli is an example of this class of riboregulators. Like many other sRNAs, RydC bears a ‘seed’ region that recognises specific transcripts through base-pairing, and its activities are facilitated by the RNA chaperone Hfq. The crystal structure of RydC in complex with E. coli Hfq at a 3.48 Å resolution illuminates how the protein interacts with and presents the sRNA for target recognition. Consolidating the protein–RNA complex is a host of distributed interactions mediated by the natively unstructured termini of Hfq. Based on the structure and other data, we propose a model for a dynamic effector complex comprising Hfq, small RNA, and the cognate mRNA target.


Author(s):  
Y.V. Mikhaylova ◽  
◽  
M.A. Tyumentseva ◽  
A.A. Shelenkov ◽  
Y.G. Yanushevich ◽  
...  

In this study, we assessed the efficiency and off-target activity of the CRISPR/CAS complex with one of the selected guide RNAs using the CIRCLE-seq technology. The gene encoding the human chemokine receptor CCR5 was used as a target sequence for genome editing. The results of this experiment indicate the correct choice of the guide RNA and efficient work of the CRISPR- CAS ribonucleoprotein complex used. CIRCLE-seq technology has shown high sensitivity compared to bioinformatic methods for predicting off-target activity of CRISPR/CAS complexes. We plan to evaluate the efficiency and off-target activity of CRISPR/CAS ribonucleoprotein complexes with other guide RNAs by slightly adjusting the CIRCLE-seq-technology protocol in order to reduce nonspecific DNA breaks and increase the number of reliable reads.


Sign in / Sign up

Export Citation Format

Share Document