scholarly journals Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels

2016 ◽  
Vol 113 (4) ◽  
pp. 1068-1073 ◽  
Author(s):  
Evanthia Nanou ◽  
Jin Yan ◽  
Nicholas P. Whitehead ◽  
Min Jeong Kim ◽  
Stanley C. Froehner ◽  
...  

Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.

2018 ◽  
Vol 115 (19) ◽  
pp. 5004-5009 ◽  
Author(s):  
Junsung Woo ◽  
Joo Ok Min ◽  
Dae-Si Kang ◽  
Yoo Sung Kim ◽  
Guk Hwa Jung ◽  
...  

Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.


1996 ◽  
Vol 75 (2) ◽  
pp. 855-866 ◽  
Author(s):  
L. L. Stark ◽  
A. R. Mercer ◽  
N. J. Emptage ◽  
T. J. Carew

1. Modulation of mechanoafferent sensory neurons (SNs) by the neutrotransmitter serotonin (5HT) plays a significant role in behavioral sensitization of several withdrawal reflexes in Aplysia. The modulatory effects of 5HT on these SNs include increased excitability, increased input resistance, action potential broadening, and increased synaptic transmission. Based on a previously described dissociation of some of these modulatory effects, revealed with the 5HT-receptor antagonist, cyproheptadine, we investigated whether a similar dissociation could be found by systematically varying the concentration of the endogenous agonist, 5HT. 2. We first applied a range of 5HT concentrations to isolated pleural/pedal ganglia (containing tail SNs and tail motor neurons, respectively), and measured the magnitude of 5HT-induced modulation of spike broadening and increased excitability. The resulting dose-response curve showed that both forms of modulation increase monotonically as a function of 5HT concentration, but that excitability has a lower threshold for modulation by 5HT than does spike duration. 3. We further characterized the modulatory effects of 5HT on Aplysia SNs by comparing the time course of onset of modulation by 5HT and the time course of recovery after washout. Independent of 5HT concentration, modulation of excitability increases rapidly in the presence of 5HT and recovers rapidly (< 3 min) after washout. Similarly, input resistance increases and recovers rapidly, mirroring the profile of increased excitability. However, modulation of spike duration exhibits two profiles, dependent on 5HT concentration. Low concentrations of 5HT (0.5 and 1 microM) induce a rapid-onset and transient-recovery form of spike broadening, which resembles the kinetics of increased excitability and increased input resistance. Higher concentrations of 5HT (2.5 and 5 microM) induce a more slowly developing and prolonged-recovery form of spike broadening (> 9 min). At these higher concentrations, the recovery profile for prolonged spike broadening is significantly different from those observed for both increased excitability and increased input resistance. 4. We next compared the relationship between spike broadening and short-term synaptic facilitation. We found that significant facilitation of synaptic transmission requires a high 5HT concentration, which is comparable with that required to induce prolonged spike broadening. Similarly, the recovery profiles for spike broadening and synaptic facilitation are strikingly similar, recovering in parallel. 5. Our experiments show that the modulatory effects of 5HT in the tail SNs can be dissociated both by their sensitivity to different concentrations of 5HT and by their kinetics of serotonergic modulation. Based on these results, together with extensive evidence from other laboratories, we propose that the short-term modulatory effects of 5HT fall into two distinct functional classes. The first class, which includes excitability, input resistance, and transient spike broadening, has a low threshold for 5HT modulation and recovers rapidly. The second class, which includes prolonged spike broadening and short-term synaptic facilitation, has a higher threshold for modulation and recovers more slowly. It now will be of interest to determine the functional contribution of each of these classes to different aspects of sensitization.


2018 ◽  
Author(s):  
Abed Ghanbari ◽  
Naixin Ren ◽  
Christian Keine ◽  
Carl Stoelzel ◽  
Bernhard Englitz ◽  
...  

AbstractInformation transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as non-synaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and non-synaptic effects based only on observed pre- and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a thalamothalamic connection in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multi-electrode recordings to illustrate how such an approach has the potential to reveal cell-type specific differences in spike transmission in vivo. Although short-term synaptic plasticity parameters estimated from ongoing pre- and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.Significance StatementAlthough synaptic dynamics have been extensively studied and modeled using intracellular recordings of post-synaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here we developed a model that, using only observations of pre- and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity and non-synaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.


2005 ◽  
Vol 102 (5) ◽  
pp. 920-928 ◽  
Author(s):  
Hiroaki Naruo ◽  
Shin Onizuka ◽  
David Prince ◽  
Mayumi Takasaki ◽  
Naweed I. Syed

Background As compared with their effects on both inhibitory and excitatory synapses, little is known about the mechanisms by which general anesthetics affect synaptic plasticity that forms the basis for learning and memory at the cellular level. To test whether clinically relevant concentrations of sevoflurane affect short-term potentiation involving cholinergic synaptic transmission, the soma-soma synapses between identified, postsynaptic neurons were used. Methods Uniquely identifiable neurons visceral dorsal 4 (presynaptic) and left pedal dorsal 1 (postsynaptic) of the mollusk Lymnaea stagnalis were isolated from the intact ganglion and paired overnight in a soma-soma configuration. Simultaneous intracellular recordings coupled with fluorescent imaging of the FM1-43 dye were made in either the absence or the presence of sevoflurane. Results Cholinergic synapses, similar to those observed in vivo, developed between the neurons, and the synaptic transmission exhibited classic short-term, posttetanic potentiation. Action potential-induced (visceral dorsal 4), 1:1 excitatory postsynaptic potentials were reversibly and significantly suppressed by sevoflurane in a concentration-dependent manner. Fluorescent imaging with the dye FM1-43 revealed that sevoflurane did not affect presynaptic exocytosis or endocytosis; instead, postsynaptic nicotinic acetylcholine receptors were blocked in a concentration-dependent manner. To test the hypothesis that sevoflurane affects short-term potentiation, a posttetanic potentiation paradigm was used, and synaptic transmission was examined in either the presence or the absence of sevoflurane. Although 1.5% sevoflurane significantly reduced synaptic transmission between the paired cells, it did not affect the formation or retention of posttetanic potentiation at this synapse. Conclusions This study demonstrates that sevoflurane blocks cholinergic synaptic transmission postsynaptically but does not affect short-term synaptic plasticity at the visceral dorsal 4-left pedal dorsal 1 synapse.


2015 ◽  
Vol 113 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Jun Ma ◽  
Lauren Kelly ◽  
Justin Ingram ◽  
Thomas J. Price ◽  
Stephen D. Meriney ◽  
...  

Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short-term synaptic facilitation. Building off our recently reported excess-calcium-binding-site model of synaptic vesicle release at the frog neuromuscular junction (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751–2763, 2013), we have investigated several mechanisms of short-term facilitation at the frog neuromuscular junction. Our studies place constraints on previously proposed facilitation mechanisms and conclude that the presence of a second class of calcium sensor proteins distinct from synaptotagmin can explain known properties of facilitation observed at the frog neuromuscular junction. We were further able to identify a novel facilitation mechanism, which relied on the persistent binding of calcium-bound synaptotagmin molecules to lipids of the presynaptic membrane. In a real physiological context, both mechanisms identified in our study (and perhaps others) may act simultaneously to cause the experimentally observed facilitation. In summary, using a combination of computer simulations and physiological recordings, we have developed a stochastic computer model of synaptic transmission at the frog neuromuscular junction, which sheds light on the facilitation mechanisms in this model synapse.


2006 ◽  
Vol 398 (1-2) ◽  
pp. 73-77 ◽  
Author(s):  
Fan Jia ◽  
Haiyang Wei ◽  
Xiangrui Li ◽  
Xiaoqiao Xie ◽  
Yifeng Zhou

2007 ◽  
Vol 97 (4) ◽  
pp. 2863-2874 ◽  
Author(s):  
K. M. MacLeod ◽  
T. K. Horiuchi ◽  
C. E. Carr

The nature of the synaptic connection from the auditory nerve onto the cochlear nucleus neurons has a profound impact on how sound information is transmitted. Short-term synaptic plasticity, by dynamically modulating synaptic strength, filters information contained in the firing patterns. In the sound-localization circuits of the brain stem, the synapses of the timing pathway are characterized by strong short-term depression. We investigated the short-term synaptic plasticity of the inputs to the bird's cochlear nucleus angularis (NA), which encodes intensity information, by using chick embryonic brain slices and trains of electrical stimulation. These excitatory inputs expressed a mixture of short-term facilitation and depression, unlike those in the timing nuclei that only depressed. Facilitation and depression at NA synapses were balanced such that postsynaptic response amplitude was often maintained throughout the train at high firing rates (>100 Hz). The steady-state input rate relationship of the balanced synapses linearly conveyed rate information and therefore transmits intensity information encoded as a rate code in the nerve. A quantitative model of synaptic transmission could account for the plasticity by including facilitation of release (with a time constant of ∼40 ms), and a two-step recovery from depression (with one slow time constant of ∼8 s, and one fast time constant of ∼20 ms). A simulation using the model fit to NA synapses and auditory nerve spike trains from recordings in vivo confirmed that these synapses can convey intensity information contained in natural train inputs.


2012 ◽  
Vol 24 (10) ◽  
pp. 2579-2603 ◽  
Author(s):  
Tyler P. Lee ◽  
Dean V. Buonomano

The discrimination of complex auditory stimuli relies on the spatiotemporal structure of spike patterns arriving in the cortex. While recordings from auditory areas reveal that many neurons are highly selective to specific spatiotemporal stimuli, the mechanisms underlying this selectivity are unknown. Using computer simulations, we show that selectivity can emerge in neurons in an entirely unsupervised manner. The model is based on recurrently connected spiking neurons and synapses that exhibit short-term synaptic plasticity. During a developmental stage, spoken digits were presented to the network; the only type of long-term plasticity present was a form of homeostatic synaptic plasticity. From an initially unresponsive state, training generated a high percentage of neurons that responded selectively to individual digits. Furthermore, units within the network exhibited a cardinal feature of vocalization-sensitive neurons in vivo: differential responses between forward and reverse stimulus presentations. Direction selectivity deteriorated significantly, however, if short-term synaptic plasticity was removed. These results establish that a simple form of homeostatic plasticity is capable of guiding recurrent networks into regimes in which complex stimuli can be discriminated. In addition, one computational function of short-term synaptic plasticity may be to provide an inherent temporal asymmetry, thus contributing to the characteristic forward-reverse selectivity.


Sign in / Sign up

Export Citation Format

Share Document