scholarly journals Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance

2018 ◽  
Vol 115 (23) ◽  
pp. 6070-6075 ◽  
Author(s):  
Andrew W. McHill ◽  
Joseph T. Hull ◽  
Wei Wang ◽  
Charles A. Czeisler ◽  
Elizabeth B. Klerman

Millions of individuals routinely remain awake for more than 18 h daily, which causes performance decrements. It is unknown if these functional impairments are the result of that extended wakefulness or from the associated shortened sleep durations. We therefore examined changes in objective reaction time performance and subjective alertness in a 32-d inpatient protocol in which participants were scheduled to wakefulness durations below 16 h while on a 20-h “day,” with randomization into standard sleep:wake ratio (1:2) or chronic sleep restriction (CSR) ratio (1:3.3) conditions. This protocol allowed determination of the contribution of sleep deficiency independent of extended wakefulness, since individual episodes of wakefulness in the CSR condition were only 15.33 h in duration (less than the usual 16 h of wakefulness in a 24-h day) and sleep episodes were 4.67 h in duration each cycle. We found that chronic short sleep duration, even without extended wakefulness, doubled neurobehavioral reaction time performance and increased lapses of attention fivefold, yet did not uniformly decrease self-reported alertness. Further, these impairments in neurobehavioral performance were worsened during the circadian night and were not recovered during the circadian day, indicating that the deleterious effect from the homeostatic buildup of CSR is expressed even during the circadian promotion of daytime arousal. These findings reveal a fundamental aspect of human biology: Chronic insufficient sleep duration equivalent to 5.6 h of sleep opportunity per 24 h impairs neurobehavioral performance and self-assessment of alertness, even without extended wakefulness.

2009 ◽  
Vol 23 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Daniel T. Bishop ◽  
Costas I. Karageorghis ◽  
Noel P. Kinrade

The main objective of the current study was to examine the impact of musically induced emotions on athletes’ subsequent choice reaction time (CRT) performance. A random sample of 54 tennis players listened to researcher-selected music whose tempo and intensity were modified to yield six different music excerpts (three tempi × two intensities) before completing a CRT task. Affective responses, heart rate (HR), and RTs for each condition were contrasted with white noise and silence conditions. As predicted, faster music tempi elicited more pleasant and aroused emotional states; and higher music intensity yielded both higher arousal (p < .001) and faster subsequent CRT performance (p < .001). White noise was judged significantly less pleasant than all experimental conditions (p < .001); and silence was significantly less arousing than all but one experimental condition (p < .001). The implications for athletes’ use of music as part of a preevent routine when preparing for reactive tasks are discussed.


Author(s):  
Dafne Herrero ◽  
Tânia Brusque Crocetta ◽  
Thais Massetti ◽  
Íbis Ariana Pena de Moraes ◽  
Isabela Lopes Trevizan ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Arash Mirifar ◽  
Andreas Keil ◽  
Jürgen Beckmann ◽  
Felix Ehrlenspiel

Sign in / Sign up

Export Citation Format

Share Document