cortical lesion
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 58)

H-INDEX

38
(FIVE YEARS 5)

Author(s):  
Amna Yasmin ◽  
Asla Pitkänen ◽  
Pedro Andrade ◽  
Tomi Paananen ◽  
Olli Gröhn ◽  
...  

AbstractVentricular enlargement is one long-term consequence of a traumatic brain injury, and a risk factor for memory disorders and epilepsy. One underlying mechanisms of the chronic ventricular enlargement is disturbed cerebrospinal-fluid secretion or absorption by choroid plexus. We set out to characterize the different aspects of ventricular enlargement in lateral fluid percussion injury (FPI) rat model by magnetic resonance imaging (MRI) and discovered choroid plexus injury in rats that later developed hydrocephalus. We followed the brain pathology progression for 6 months and studied how the ventricular growth was associated with the choroid plexus injury, cortical lesion expansion, hemorrhagic load or blood perfusion deficits. We correlated MRI findings with the seizure susceptibility in pentylenetetrazol challenge and memory function in Morris water-maze. Choroid plexus injury was validated by ferric iron (Prussian blue) and cytoarchitecture (Nissl) stainings. We discovered choroid plexus injury that accumulates iron in 90% of FPI rats by MRI. The amount of the choroid plexus iron remained unaltered 1-, 3- and 6-month post-injury. During this time, the ventricles kept on growing bilaterally. Ventricular growth did not depend on the cortical lesion severity or the cortical hemorrhagic load suggesting a separate pathology. Instead, the results indicate choroidal injury as one driver of the post-traumatic hydrocephalus, since the higher the choroid plexus iron load the larger were the ventricles at 6 months. The ventricle size or the choroid plexus iron load did not associate with seizure susceptibility. Cortical hypoperfusion and memory deficits were worse in rats with greater ventricular growth.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriyuki Higo

The brain has the ability to reconstruct neural structures and functions to compensate for the brain lesions caused by stroke, although it is highly limited in primates including humans. Animal studies in which experimental lesions were induced in the brain have contributed to the current understanding of the neural mechanisms underlying functional recovery. Here, I have highlighted recent advances in non-human primate models using primate species such as macaques and marmosets, most of which have been developed to study the mechanisms underlying the recovery of motor functions after stroke. Cortical lesion models have been used to investigate motor recovery after lesions to the cortical areas involved in movements of specific body parts. Models of a focal stroke at the posterior internal capsule have also been developed to bridge the gap between the knowledge obtained by cortical lesion models and the development of intervention strategies because the severity and outcome of motor deficits depend on the degree of lesions to the region. This review will also introduce other stroke models designed to study the plastic changes associated with development and recovery from cognitive and sensory impairments. Although further validation and careful interpretation are required, considering the differences between non-human primate brains and human brains, studies using brain-lesioned non-human primates offer promise for improving translational outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ronit Feingold-Polak ◽  
Anna Yelkin ◽  
Shmil Edelman ◽  
Amir Shapiro ◽  
Shelly Levy-Tzedek

AbstractImpairment in force regulation and motor control impedes the independence of individuals with stroke by limiting their ability to perform daily activities. There is, at present, incomplete information about how individuals with stroke regulate the application of force and control their movement when reaching, grasping, and lifting objects of different weights, located at different heights. In this study, we assess force regulation and kinematics when reaching, grasping, and lifting a cup of two different weights (empty and full), located at three different heights, in a total of 46 participants: 30 sub-acute stroke participants, and 16 healthy individuals. We found that the height of the reached target affects both force calibration and kinematics, while its weight affects only the force calibration when post-stroke and healthy individuals perform a reach-to-grasp task. There was no difference between the two groups in the mean and peak force values. The individuals with stroke had slower, jerkier, less efficient, and more variable movements compared to the control group. This difference was more pronounced with increasing stroke severity. With increasing stroke severity, post-stroke individuals demonstrated altered anticipation and preparation for lifting, which was evident for either cortical lesion side.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen R. Bottenfield ◽  
Bethany G. E. Bowley ◽  
Monica A. Pessina ◽  
Maria Medalla ◽  
Douglas L. Rosene ◽  
...  

Abstract Background Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. Methods Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. Results Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. Conclusions These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.


Author(s):  
Andrea Menichetti ◽  
Laura Bartsoen ◽  
Bart Depreitere ◽  
Jos Vander Sloten ◽  
Nele Famaey

Controlled cortical impact (CCI) on porcine brain is often utilized to investigate the pathophysiology and functional outcome of focal traumatic brain injury (TBI), such as cerebral contusion (CC). Using a finite element (FE) model of the porcine brain, the localized brain strain and strain rate resulting from CCI can be computed and compared to the experimentally assessed cortical lesion. This way, tissue-level injury metrics and corresponding thresholds specific for CC can be established. However, the variability and uncertainty associated with the CCI experimental parameters contribute to the uncertainty of the provoked cortical lesion and, in turn, of the predicted injury metrics. Uncertainty quantification via probabilistic methods (Monte Carlo simulation, MCS) requires a large number of FE simulations, which results in a time-consuming process. Following the recent success of machine learning (ML) in TBI biomechanical modeling, we developed an artificial neural network as surrogate of the FE porcine brain model to predict the brain strain and the strain rate in a computationally efficient way. We assessed the effect of several experimental and modeling parameters on four FE-derived CC injury metrics (maximum principal strain, maximum principal strain rate, product of maximum principal strain and strain rate, and maximum shear strain). Next, we compared the in silico brain mechanical response with cortical damage data from in vivo CCI experiments on pig brains to evaluate the predictive performance of the CC injury metrics. Our ML surrogate was capable of rapidly predicting the outcome of the FE porcine brain undergoing CCI. The now computationally efficient MCS showed that depth and velocity of indentation were the most influential parameters for the strain and the strain rate-based injury metrics, respectively. The sensitivity analysis and comparison with the cortical damage experimental data indicate a better performance of maximum principal strain and maximum shear strain as tissue-level injury metrics for CC. These results provide guidelines to optimize the design of CCI tests and bring new insights to the understanding of the mechanical response of brain tissue to focal traumatic brain injury. Our findings also highlight the potential of using ML for computationally efficient TBI biomechanics investigations.


Author(s):  
Zrzavy Tobias ◽  
Wielandner Alice ◽  
Haider Lukas ◽  
Bartsch Sophie ◽  
Leutmezer Fritz ◽  
...  

Abstract Background Technical improvements in magnetic resonance imaging (MRI) acquisition, such as higher field strength and optimized sequences, lead to better multiple sclerosis (MS) lesion detection and characterization. Multiplication of 3D-FLAIR with 3D-T2 sequences (FLAIR2) results in isovoxel images with increased contrast-to-noise ratio, increased white–gray-matter contrast, and improved MS lesion visualization without increasing MRI acquisition time. The current study aims to assess the potential of 3D-FLAIR2 in detecting cortical/leucocortical (LC), juxtacortical (JC), and white matter (WM) lesions. Objective To compare lesion detection of 3D-FLAIR2 with state-of-the-art 3D-T2-FLAIR and 3D-T2-weighted images. Methods We retrospectively analyzed MRI scans of thirteen MS patients, showing previously noted high cortical lesion load. Scans were acquired using a 3 T MRI scanner. WM, JC, and LC lesions were manually labeled and manually counted after randomization of 3D-T2, 3D-FLAIR, and 3D-FLAIR2 scans using the ITK-SNAP tool. Results LC lesion visibility was significantly improved by 3D-FLAIR2 in comparison to 3D-FLAIR (4 vs 1; p = 0.018) and 3D-T2 (4 vs 1; p = 0.007). Comparing LC lesion detection in 3D-FLAIR2 vs. 3D-FLAIR, 3D-FLAIR2 detected on average 3.2 more cortical lesions (95% CI − 9.1 to 2.8). Comparing against 3D-T2, 3D-FLAIR2 detected on average 3.7 more LC lesions (95% CI 3.3–10.7). Conclusions 3D-FLAIR2 is an easily applicable time-sparing MR post-processing method to improve cortical lesion detection. Larger sampled studies are warranted to validate the sensitivity and specificity of 3D-FLAIR2.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander H. C. W. Agopyan-Miu ◽  
Matei A. Banu ◽  
Michael L. Miller ◽  
Christopher Troy ◽  
Gunnar Hargus ◽  
...  

AbstractInfratentorial oligodendrogliomas, a rare pathological entity, are generally considered metastatic lesions from supratentorial primary tumors. Here, we report the case of a 23-year-old man presenting with a histopathologically confirmed right precentral gyrus grade 2 oligodendroglioma and a concurrent pontine grade 3 oligodendroglioma. The pontine lesion was biopsied approximately a year after the biopsy of the precentral lesion due to disease progression despite 4 cycles of procarbazine-CCNU-vincristine (PCV) chemotherapy and stable supratentorial disease. Histology and genetic analysis of the pontine biopsy were consistent with grade 3 oligodendroglioma, and comparison of the two lesions demonstrated common 1p/19q co-deletions and TERT promoter mutations but distinct IDH1 mutations, with a non-canonical IDH1 R132G mutation identified in the infratentorial lesion and a R132H mutation identified in the cortical lesion. Initiation of Temozolomide led to complete response of the supratentorial lesion and durable disease control, while Temozolomide with subsequent radiation therapy of 54 Gy in 30 fractions resulted in partial response of the pontine lesion. This case report supports possible distinct molecular pathogenesis in supratentorial and infratentorial oligodendrogliomas and raises questions about the role of different IDH1 mutant isoforms in explaining treatment resistance to different chemotherapy regimens. Importantly, this case suggests that biopsies of all radiographic lesions, when feasible and safe, should be considered in order to adequately guide management in multicentric oligodendrogliomas.


2021 ◽  
Vol 22 (19) ◽  
pp. 10555
Author(s):  
Jenni Kyyriäinen ◽  
Natallie Kajevu ◽  
Ivette Bañuelos ◽  
Leonardo Lara ◽  
Anssi Lipponen ◽  
...  

We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to –29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.


2021 ◽  
Vol 8 (6) ◽  
pp. e1083
Author(s):  
Damiano Marastoni ◽  
Roberta Magliozzi ◽  
Anna Bolzan ◽  
Anna Isabella Pisani ◽  
Stefania Rossi ◽  
...  

Background and ObjectivesTo evaluate the extent of intrathecal inflammation in patients with primary progressive MS (PPMS) at the time of diagnosis and to define markers and a specific inflammatory profile capable of distinguishing progressive from relapsing-remitting multiple sclerosis (RRMS).MethodsLevels of 34 pro- and anti-inflammatory cytokines and chemokines in the CSF were evaluated at the diagnosis in 16 patients with PPMS and 80 with RRMS. All patients underwent clinical evaluation, including Expanded Disability Status Scale assessment and a 3T brain MRI to detect white matter and cortical lesion number and volume and global and regional cortical thickness.ResultsHigher levels of CXCL12 (odds ratio [OR] = 3.97, 95% CI [1.34–11.7]) and the monocyte-related osteopontin (OR = 2.24, 95% CI [1.01–4.99]) were detected in patients with PPMS, whereas levels of interleukin-10 (IL10) (OR = 0.28, 95% CI [0.09–0.96]) were significantly increased in those with RRMS. High CXCL12 levels were detected in patients with increased gray matter lesion number and volume (p = 0.001, r = 0.832 and r = 0.821, respectively). Pathway analysis confirmed the chronic inflammatory processes occurring in PPMS.ConclusionsAt the time of diagnosis, a specific CSF protein profile can recognize the presence of early intrathecal inflammatory processes, possibly stratifying PPMS with respect to RRMS. Elevated CSF levels of CXCL12 and osteopontin suggested a key role of brain innate immunity and glia activity in MS. These molecules could represent useful candidate markers of MS progression, with implications for the pathogenesis and treatment of progressive MS.Classification of EvidenceThis study provides Class III evidence that CXCL12 and monocyte-related osteopontin may be correlated with PPMS, and IL-10 may be related to RRMS. It is may be correlated due to Bonferroni correction negating the statistical correlations found in the study.


2021 ◽  
Author(s):  
Mitsouko van Assche ◽  
Julian Klug ◽  
Elisabeth Dirren ◽  
Jonas Richiardi ◽  
Emmanuel Carrera

Background and Purpose: Does the brain become more resilient after a first stroke to reduce the consequences of a new lesion? Although recurrent strokes are a major clinical issue, whether and how the brain prepares for a second attack is unknown. This is due to the difficulties to obtain an appropriate dataset of stroke patients with comparable lesions, imaged at the same interval after onset. Furthermore, timing of the recurrent event remains unpredictable. Methods: Here we used a novel clinical lesion simulation approach to test the hypothesis that resilience in brain networks increases during stroke recovery. 16 patients with a lesion restricted to the primary motor cortex were recruited. At 3 time points of the index event (10 days, 3 weeks, 3 months), we mimicked recurrent infarcts by deletion of nodes in brain networks (resting-state fMRI). Graph measures were applied to determine resilience (global efficiency) and wiring cost (mean degree) of the network. Results: At 10 days and 3 weeks after stroke, resilience was similar in patients and controls. However, at 3 months, while motor function had fully recovered, resilience to clinically representative simulated lesions was higher compared to controls (cortical lesion p=0.012; subcortical: p=0.009; cortico-subcortical: p=0.009). Similar results were found after random (p=0.012) and targeted (p=0.015) attacks. Conclusion: Our results suggest that, after a lesion, brain networks reconfigure to increase resilience to future insults. Lesion simulation is an innovative approach, which may have major implications for stroke therapy. Individualized neuromodulation strategies could be developed to foster resilient network reconfigurations after a first stroke to limit the consequences of future attacks.


Sign in / Sign up

Export Citation Format

Share Document