d2 dopamine receptor
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 34)

H-INDEX

85
(FIVE YEARS 6)

Author(s):  
Antonio Abad-García ◽  
A. Lilia Ocampo-Néstor ◽  
Bhaskar C. Das ◽  
Eunice D. Farfán-García ◽  
Martiniano Bello ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1352
Author(s):  
Zhuo Shao ◽  
Ikuo Masuho ◽  
Anupreet Tumber ◽  
Jason T. Maynes ◽  
Erika Tavares ◽  
...  

Identifying multiple ultra-rare genetic syndromes with overlapping phenotypes is a diagnostic conundrum in clinical genetics. This study investigated the pathogenicity of a homozygous missense variant in GNB5 (GNB5L; NM_016194.4: c.920T > G (p. Leu307Arg); GNB5S; NM_006578.4: c.794T > G (p. Leu265Arg)) identified through exome sequencing in a female child who also had 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency (newborn screening positive) and hemoglobin E trait. The proband presented with early-onset intellectual disability, the severity of which was more in keeping with GNB5-related disorder than 3-MCC deficiency. She later developed bradycardia and cardiac arrest, and upon re-phenotyping showed cone photo-transduction recovery deficit, all known only to GNB5-related disorders. Patient-derived fibroblast assays showed preserved GNB5S expression, but bioluminescence resonance energy transfer assay showed abolished function of the variant reconstituted Gβ5S containing RGS complexes for deactivation of D2 dopamine receptor activity, confirming variant pathogenicity. This study highlights the need for precise phenotyping and functional assays to facilitate variant classification and clinical diagnosis in patients with complex medical conditions.


2021 ◽  
Author(s):  
Seongsik Yun ◽  
Ben Yang ◽  
Madison M Martin ◽  
Nai-Hsing Yeh ◽  
Anis Contractor ◽  
...  

Overactive dopamine transmission in psychosis is predicted to unbalance striatal output via D1- and D2-dopamine receptor-expressing spiny-projection neurons (SPNs). Antipsychotic drugs are thought to re-balance this output by blocking D2-receptor signaling. Here we imaged D1- and D2-SPN Ca2+ dynamics in mice to determine the neural signatures of antipsychotic effect. Initially we compared effective (clozapine and haloperidol) antipsychotics to a candidate drug that failed in clinical trials (MP-10). Clozapine and haloperidol normalized hyperdopaminergic D1-SPN dynamics, while MP-10 only normalized D2-SPN activity. Clozapine, haloperidol or chemogenetic manipulations of D1-SPNs also normalized sensorimotor gating. Given the surprising correlation between clinical efficacy and D1-SPN modulation, we evaluated compounds that selectively target D1-SPNs. D1R partial agonism, antagonism, or positive M4 cholinergic receptor modulation all normalized the levels of D1-SPN activity, locomotion, and sensorimotor gating. Our results suggest that D1-SPN activity is a more relevant therapeutic target than D2-SPN activity for the development of effective antipsychotics.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 578
Author(s):  
Oleg Kovtun ◽  
Ruben Torres ◽  
Laurel G. Bellocchio ◽  
Sandra Jean Rosenthal

The role of lateral mobility and nanodomain organization of G protein-coupled receptors in modulating subcellular signaling has been under increasing scrutiny. Investigation of D2 dopamine receptor diffusion dynamics is of particular interest, as these receptors have been linked to altered neurotransmission in affective disorders and represent the primary target for commonly prescribed antipsychotics. Here, we applied our single quantum dot tracking approach to decipher intrinsic diffusion patterns of the wild-type long isoform of the D2 dopamine receptor and its genetic variants previously identified in several cohorts of schizophrenia patients. We identified a subtle decrease in the diffusion rate of the Val96Ala mutant that parallels its previously reported reduced affinity for potent neuroleptics clozapine and chlorpromazine. Slower Val96Ala variant diffusion was not accompanied by a change in receptor-receptor transient interactions as defined by the diffraction-limited quantum dot colocalization events. In addition, we implemented a Voronoї tessellation-based algorithm to compare nanoclustering of the D2 dopamine receptor to the dominant anionic phospholipid phosphatidylinositol 4,5-bisphosphate in the plasma membrane of live cells.


2021 ◽  
Author(s):  
Jimmy Holder ◽  
Kaifang Pang ◽  
Michel Weiwer ◽  
Kihoon Han ◽  
Wei Wang ◽  
...  

Abstract While the contributions of some genes to neuropsychiatric disorders are clear, the downstream neuronal effects are poorly understood. Over-expression of SHANK3, which encodes a key synaptic protein, causes neuropsychiatric phenotypes in humans and manic-like behavior in mice providing an opportunity to interrogate the role of SHANK3 in a subset of neurons that might underlie the manic-like behavior. Herein, we describe Shank3’s critical role in D2 dopamine receptor (D2dr) neurons and show that Shank3 overexpression causes increased synaptic neurotransmission in D2dr, but not D1dr, expressing striatal medium spiny neurons. Either pharmacologic D2dr inhibition or genetic normalization of Shank3 abundance in D2-neurons ameliorates manic-like behaviors. Integrating bioinformatic analyses of Shank3’s striatal interactome, D1 and D2 dopamine receptor binding proteins, and single-cell RNA-seq datasets, we demonstrate a functional relationship between Shank3 and the D2dr—but not the D1dr. Thus, while Shank3 is over-expressed in both D1 and D2 dopamine receptor expressing striatal neurons, D2 neuronal dysfunction causes manic-like behaviors.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3182
Author(s):  
Boeun Lee ◽  
Michelle Taylor ◽  
Suzy A. Griffin ◽  
Tamara McInnis ◽  
Nathalie Sumien ◽  
...  

N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.


2021 ◽  
Vol 400 ◽  
pp. 113047
Author(s):  
László Péczely ◽  
Gabriella Kékesi ◽  
Veronika Kállai ◽  
Tamás Ollmann ◽  
Kristóf László ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document