scholarly journals Quantum parity Hall effect in Bernal-stacked trilayer graphene

2019 ◽  
Vol 116 (21) ◽  
pp. 10286-10290 ◽  
Author(s):  
Petr Stepanov ◽  
Yafis Barlas ◽  
Shi Che ◽  
Kevin Myhro ◽  
Greyson Voigt ◽  
...  

The quantum Hall effect has recently been generalized from transport of conserved charges to include transport of other approximately conserved-state variables, including spin and valley, via spin- or valley-polarized boundary states with different chiralities. Here, we report a class of quantum Hall effect in Bernal- or ABA-stacked trilayer graphene (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the system’s mirror reflection symmetry. At the charge neutrality point, the longitudinal conductance σxx is first quantized to 4e2/h at a small perpendicular magnetic field B⊥, establishing the presence of four edge channels. As B⊥ increases, σxx first decreases to 2e2/h, indicating spin-polarized counterpropagating edge states, and then, to approximately zero. These behaviors arise from level crossings between even- and odd-parity bulk Landau levels driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong B⊥ limit and a spin-polarized state at intermediate fields. The transitions between spin-polarized and -unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions.

1997 ◽  
Vol 11 (22) ◽  
pp. 2593-2619 ◽  
Author(s):  
Sadao Takaoka ◽  
Kenichi Oto ◽  
Kazuo Murase

The quantum Hall effect for the GaAs/AlGaAs heterostrcture is investigated by an ac capacitance measurement between the two-dimensional electron system (2DES) and the gate on GaAs/AlGaAs. The capacitance minima at the quantum Hall plateaus are mainly determined not by the 2DES area under the gate but by the edge length of 2DES. There exists the high conductive region due to the edge states along the 2DES boundary, when the bulk conductivity σxx is small enough at low temperatures and high magnetic fields. From the temperature and frequency dependence of the capacitance minima, it is found that the measured capacitance consists of the contribution from the edge states and that of the bulk state, which is treated as a distributed circuit of a resistive plate with the conductivity σxx. The evaluated width of edge states from the capacitance is much larger than the magnetic length and the cyclotron radius expected from the one-electron picture. This wide width of edge states can be explained by the compressible-incompressible strip model, in which the screening effect is taken into account. Further the bulk conductivity of less than 10-12 S (S=1/Ω) is measured by the capacitance of the Corbino geometry sample, where the edge states are absent and the capacitance is determined by only σxx in this geometry. The localization of the bulk state is investigated by the obtained σxx.


1991 ◽  
Vol 05 (03) ◽  
pp. 509-527 ◽  
Author(s):  
MICHAEL STONE

The edge states of the quantum Hall effect carry representations of chiral current algebras and their associated groups. In the simplest case of a single filled Landau level, I demonstrate explicitly how the group action affects the many-body states, and why the Kac-Peterson cocycle appears in the group multiplication law. I show how these representations may be used to construct vertex operators which create localised edge excitations, and indicate how they are related to the bulk quasi-particles.


2013 ◽  
Vol 456 ◽  
pp. 012006 ◽  
Author(s):  
C Cobaleda ◽  
E Diez ◽  
M Amado ◽  
S Pezzini ◽  
F Rossella ◽  
...  

Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 54-57 ◽  
Author(s):  
Fabien Lafont ◽  
Amir Rosenblatt ◽  
Moty Heiblum ◽  
Vladimir Umansky

The quantum Hall effect, observed in a two-dimensional (2D) electron gas subjected to a perpendicular magnetic field, imposes a 1D-like chiral, downstream, transport of charge carriers along the sample edges. Although this picture remains valid for electrons and Laughlin’s fractional quasiparticles, it no longer holds for quasiparticles in the so-called hole-conjugate states. These states are expected, when disorder and interactions are weak, to harbor upstream charge modes. However, so far, charge currents were observed to flow exclusively downstream in the quantum Hall regime. Studying the canonical spin-polarized and spin-unpolarized v = 2/3 hole-like states in GaAs-AlGaAs heterostructures, we observed a significant upstream charge current at short propagation distances in the spin unpolarized state.


2003 ◽  
Vol 67 (12) ◽  
Author(s):  
Chia-Chen Chang ◽  
Sudhansu S. Mandal ◽  
Jainendra K. Jain

2002 ◽  
Vol 65 (7) ◽  
Author(s):  
A. Würtz ◽  
R. Wildfeuer ◽  
A. Lorke ◽  
E. V. Deviatov ◽  
V. T. Dolgopolov

2004 ◽  
Vol 679 (3) ◽  
pp. 447-463 ◽  
Author(s):  
V.P. Nair ◽  
S. Randjbar-Daemi

Sign in / Sign up

Export Citation Format

Share Document