scholarly journals Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha

2019 ◽  
Vol 116 (35) ◽  
pp. 17531-17540 ◽  
Author(s):  
Camille Alam ◽  
Susanne Aufreiter ◽  
Constantine J. Georgiou ◽  
Md. Tozammel Hoque ◽  
Richard H. Finnell ◽  
...  

Folates are critical for central nervous system function. Folate transport is mediated by 3 major pathways, reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptor alpha (FRα/Folr1), known to be regulated by ligand-activated nuclear receptors. Cerebral folate delivery primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems can result in very low folate levels in the cerebrospinal fluid causing childhood neurodegenerative disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. Our group has previously reported in vitro that functional expression of RFC at the blood–brain barrier (BBB) and its upregulation by the vitamin D nuclear receptor (VDR) could provide an alternative route for brain folate uptake. In this study, we further demonstrated in vivo, using Folr1 knockout (KO) mice, that loss of FRα led to a substantial decrease of folate delivery to the brain and that pretreatment of Folr1 KO mice with the VDR activating ligand, calcitriol (1,25-dihydroxyvitamin D3), resulted in over a 6-fold increase in [13C5]-5-formyltetrahydrofolate ([13C5]-5-formylTHF) concentration in brain tissues, with levels comparable to wild-type animals. Brain-to-plasma concentration ratio of [13C5]-5-formylTHF was also significantly higher in calcitriol-treated Folr1 KO mice (15-fold), indicating a remarkable enhancement in brain folate delivery. These findings demonstrate that augmenting RFC functional expression at the BBB could effectively compensate for the loss of Folr1-mediated folate uptake at the choroid plexus, providing a therapeutic approach for neurometabolic disorders caused by defective brain folate transport.

Hybridoma ◽  
2007 ◽  
Vol 26 (5) ◽  
pp. 281-288 ◽  
Author(s):  
Amy E. Smith ◽  
Michael Pinkney ◽  
Nigel H. Piggott ◽  
Hilary Calvert ◽  
Ian D. Milton ◽  
...  

2006 ◽  
Vol 24 (26) ◽  
pp. 4254-4261 ◽  
Author(s):  
Keith L. Knutson ◽  
Christopher J. Krco ◽  
Courtney L. Erskine ◽  
Karin Goodman ◽  
Linda E. Kelemen ◽  
...  

Purpose Studies have demonstrated that the generation of immunity to tumor antigens is associated with improved prognosis for many cancers. A candidate antigen is the folate receptor alpha (FRα), which is overexpressed in breast and ovarian cancers. Our goal in this study was to attain a better understanding of the extent of endogenous FRα immunity. Methods Using a CD4+ T cell epitope prediction algorithm, we predicted promiscuous epitopes of FRα, and tested for immunity in 30 breast (n = 17) or ovarian (n = 13) cancer patients and 18 healthy donors using enzyme-linked immunospot analysis. Results Fourteen peptides were predicted, seven each from the carboxy- and amino-terminus halves of the protein. More than 70% of patients demonstrated immunity to at least one FRα peptide. Patients responded to an average of 3 ± 0.5 peptides, whereas healthy donors responded to 1 ± 0.4 peptides (P = .004). Five peptides were recognized by more than 25% of patients. Responses to three peptides were higher (P < .05) in patients than in healthy donors, suggesting augmented immunity. Compared with healthy individuals, patients developed higher immunity to the amino-terminus half of the receptor (P = .03). There was no difference between each group in the responses to nonspecific (P = .2) and viral stimuli (P = .5). Lastly, patients demonstrated elevated levels of FRα antibodies consistent with a coordinated immune response. Conclusion These findings demonstrate that the FRα is a target of the immune system in breast and ovarian cancer patients. Understanding which antigens are targeted by the immune system may be important for prognosis or immune-based therapies.


Sign in / Sign up

Export Citation Format

Share Document