scholarly journals CXCR4/CXCL12-mediated entrapment of axons at the injury site compromises optic nerve regeneration

2021 ◽  
Vol 118 (21) ◽  
pp. e2016409118
Author(s):  
Alexander M. Hilla ◽  
Annemarie Baehr ◽  
Marco Leibinger ◽  
Anastasia Andreadaki ◽  
Dietmar Fischer

Regenerative failure in the mammalian optic nerve is generally attributed to axotomy-induced retinal ganglion cell (RGC) death, an insufficient intrinsic regenerative capacity, and an extrinsic inhibitory environment. Here, we show that a chemoattractive CXCL12/CXCR4-dependent mechanism prevents the extension of growth-stimulated axons into the distal nerve. The chemokine CXCL12 is chemoattractive toward axonal growth cones in an inhibitory environment, and these effects are entirely abolished by the specific knockout of its receptor, CXCR4 (CXCR4−/−), in cultured regenerating RGCs. Notably, 8% of naïve RGCs express CXCL12 and transport the chemokine along their axons in the nerve. Thus, axotomy causes its release at the injury site. However, most osteopontin-positive α-RGCs, the main neuronal population that survives optic nerve injury, express CXCR4 instead. Thus, CXCL12-mediated attraction prevents growth-stimulated axons from regenerating distally in the nerve, indicated by axons returning to the lesion site. Accordingly, specific depletion of CXCR4 in RGC reduces aberrant axonal growth and enables long-distance regeneration. Likewise, CXCL12 knockout in RGCs fully mimics these CXCR4−/− effects. Thus, active CXCL12/CXCR4-mediated entrapment of regenerating axons to the injury site contributes to regenerative failure in the optic nerve.

Cell Reports ◽  
2020 ◽  
Vol 31 (3) ◽  
pp. 107537 ◽  
Author(s):  
Xue-Wei Wang ◽  
Shu-Guang Yang ◽  
Chi Zhang ◽  
Ming-Wen Hu ◽  
Jiang Qian ◽  
...  

2019 ◽  
Author(s):  
Xue-Wei Wang ◽  
Shu-Guang Yang ◽  
Chi Zhang ◽  
Jin-Jin Ma ◽  
Yingchi Zhang ◽  
...  

AbstractIn addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here we showed that knocking out myosin IIA/B in retinal ganglion cells alone either before or after optic nerve crush induced marked and sustained optic nerve regeneration. Combined Lin28 overexpression and myosin IIA/B knockout led to synergistic promoting effect and long-distance axon regeneration. Immunostaining, RNA-seq and western blot analyses revealed that myosin II deletion did not affect known axon regeneration signaling pathways or the expression of regeneration associated genes. Instead, it abolished the retraction bulb formation and significantly enhanced the axon extension efficiency. The study provided clear evidence that directly targeting neuronal cytoskeleton was sufficient to induce strong CNS axon regeneration, and combining gene expression in the soma and modified cytoskeletal dynamics in the axon was a promising approach for long-distance CNS axon regeneration.


2017 ◽  
Vol 426 (2) ◽  
pp. 360-373 ◽  
Author(s):  
G.B. Whitworth ◽  
B.C. Misaghi ◽  
D.M. Rosenthal ◽  
E.A. Mills ◽  
D.J. Heinen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document