Proton exchange membrane fuel cells powered with both CO and H2

2021 ◽  
Vol 118 (43) ◽  
pp. e2107332118
Author(s):  
Xian Wang ◽  
Yang Li ◽  
Ying Wang ◽  
Hao Zhang ◽  
Zhao Jin ◽  
...  

The CO electrooxidation is long considered invincible in the proton exchange membrane fuel cell (PEMFC), where even a trace level of CO in H2 seriously poisons the anode catalysts and leads to huge performance decay. Here, we describe a class of atomically dispersed IrRu-N-C anode catalysts capable of oxidizing CO, H2, or a combination of the two. With a small amount of metal (24 μgmetal⋅cm−2) used in the anode, the H2 fuel cell performs its peak power density at 1.43 W⋅cm−2. When operating with pure CO, this catalyst exhibits its maximum current density at 800 mA⋅cm−2, while the Pt/C-based cell ceases to work. We attribute this exceptional catalytic behavior to the interplay between Ir and Ru single-atom centers, where the two sites act in synergy to favorably decompose H2O and to further facilitate CO activation. These findings open up an avenue to conquer the formidable poisoning issue of PEMFCs.

2007 ◽  
Vol 60 (7) ◽  
pp. 528 ◽  
Author(s):  
Jason M. Tang ◽  
Kurt Jensen ◽  
Wenzhen Li ◽  
Mahesh Waje ◽  
Paul Larsen ◽  
...  

A simple and promising fuel-cell architecture is demonstrated using a carbon nanotube free-standing membrane (CNTFSM) made from Pt supported on purified single-walled carbon nanotubes (Pt/SWNT), which act as the catalyst layer in a hydrogen proton exchange membrane fuel cell without the need for Nafion in the catalyst layer. The CNTFSM made from Pt/SWNT at a loading of 0.082 mg Pt cm–2 exhibits higher performance with a peak power density of 0.675 W cm–2 in comparison with a commercially available E-TEK electrocatalyst made of Pt supported on XC-72 carbon black, which had a peak power density of 0.395 W cm–2 at a loading of 0.084 mg Pt cm–2 also without Nafion in the catalyst layer.


2019 ◽  
Vol 7 (45) ◽  
pp. 26062-26070 ◽  
Author(s):  
Qiong Peng ◽  
Jian Zhou ◽  
Jiatian Chen ◽  
Tian Zhang ◽  
Zhimei Sun

MXene supported single-atom catalysts catalyze the oxygen reduction reaction in a proton exchange membrane fuel cell.


2010 ◽  
Vol 11 (4) ◽  
pp. 336-342 ◽  
Author(s):  
Min-Sik Kim ◽  
Sin-Muk Lim ◽  
Min-Young Song ◽  
Hyun-Jin Cho ◽  
Yun-Ho Choi ◽  
...  

2017 ◽  
Vol 13 (9) ◽  
pp. 6462-6467 ◽  
Author(s):  
Muthukumar. M ◽  
Karthikeyan. P ◽  
Mathews Eldho ◽  
Nagarathinam. P ◽  
Panneer Selvam.E.P ◽  
...  

The Proton Exchange Membrane (PEM) fuel cell performance not only depends on temperature but also depends on the operating pressure, which will increase the performance of the PEM fuel cell. The PEM fuel cell with serpentine flow field was modeled using Solidworks software and analyzed using ANSYS software. By analysis of three different pressures on the PEM fuel cell, and came to know that the optimum pressure gives the best performance. The peak power density occurs in the constant temperature of 323 K with the pressure of 2 bar.


Sign in / Sign up

Export Citation Format

Share Document