scholarly journals Thermal conductivity of Fe-Si alloys and thermal stratification in Earth’s core

2021 ◽  
Vol 119 (1) ◽  
pp. e2119001119
Author(s):  
Youjun Zhang ◽  
Kai Luo ◽  
Mingqiang Hou ◽  
Peter Driscoll ◽  
Nilesh P. Salke ◽  
...  

Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m−1⋅K−1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

1980 ◽  
Vol 3 (3) ◽  
pp. 591-598
Author(s):  
Sukhendu Dey ◽  
Sushil Kumar Addy

In the present paper the influence of the initial stress is shown on the reflection and transmission ofPwaves at the core-mantle boundary. Taking a particular value of the inherent initial stress, the variations of reflection and transmission coefficients with respect to the angle of emergence are represented by graphs. These graphs when compared with those having no initial stress show that the effect of the initial stress is to produce a reflectedPandSwaves with numerically higher amplitudes but a transmittedPwave with smaller amplitude. A method is also indicated in this paper to calculate the actual value of the initial stress near the core-mantle boundary by measuring the amplitudes of incident and reflectedPwaves.


2014 ◽  
Vol 390 ◽  
pp. 175-185 ◽  
Author(s):  
Michael W. Ammann ◽  
Andrew M. Walker ◽  
Stephen Stackhouse ◽  
James Wookey ◽  
Alessandro M. Forte ◽  
...  

2009 ◽  
Vol 37 (6) ◽  
pp. 353-359 ◽  
Author(s):  
Hidetoshi Asanuma ◽  
Eiji Ohtani ◽  
Takeshi Sakai ◽  
Hidenori Terasaki ◽  
Seiji Kamada ◽  
...  

Author(s):  
V. Lesur ◽  
N. Gillet ◽  
M. D. Hammer ◽  
M. Mandea

AbstractEvidence of fast variations in the Earth’s core field are seen both in magnetic observatory and satellite records. We present here how they have been identified at the Earth’s surface from ground-based observatory records and how their spatio-temporal structure is now characterised by satellite data. It is shown how their properties at the core mantle boundary are extracted through localised and global modelling processes, paying particular attention to their time scales. Finally are listed possible types of waves in the liquid outer core, together with their main properties, that may give rise to these observed fast variations.


1972 ◽  
Vol 62 (4) ◽  
pp. 1063-1071 ◽  
Author(s):  
R. D. Adams

Abstract The phases P2KP, P3KP, and P4KP are well recorded from the Novaya Zemlya nuclear explosion of October 14, 1970, with the branch AB at distances of up to 20° beyond the theoretical end point A. This extension is attributed to diffraction around the core-mantle boundary. A slowness dT/dΔ = 4.56±0.02 sec/deg is determined for the AB branch of P4KP, in excellent agreement with recent determinations of the slowness of diffracted P. This slowness implies a velocity of 13.29±0.06 km/sec at the base of the mantle, and confirms recent suggestions of a low-velocity channel above the core-mantle boundary. There is evidence that arrivals recorded before the AB branch of P2KP may lie on two branches, with different slownesses. The ratio of amplitudes of successive orders of multiple inner core reflections gives a lower bound of about 2200 for Q in the outer core.


1978 ◽  
Vol 22 (3) ◽  
pp. 276-282
Author(s):  
Jozef Brestenský ◽  
Gustáv Siráň ◽  
I. Cupal

Sign in / Sign up

Export Citation Format

Share Document