Multiple inner core reflections from a Novaya Zemlya explosion

1972 ◽  
Vol 62 (4) ◽  
pp. 1063-1071 ◽  
Author(s):  
R. D. Adams

Abstract The phases P2KP, P3KP, and P4KP are well recorded from the Novaya Zemlya nuclear explosion of October 14, 1970, with the branch AB at distances of up to 20° beyond the theoretical end point A. This extension is attributed to diffraction around the core-mantle boundary. A slowness dT/dΔ = 4.56±0.02 sec/deg is determined for the AB branch of P4KP, in excellent agreement with recent determinations of the slowness of diffracted P. This slowness implies a velocity of 13.29±0.06 km/sec at the base of the mantle, and confirms recent suggestions of a low-velocity channel above the core-mantle boundary. There is evidence that arrivals recorded before the AB branch of P2KP may lie on two branches, with different slownesses. The ratio of amplitudes of successive orders of multiple inner core reflections gives a lower bound of about 2200 for Q in the outer core.

1978 ◽  
Vol 68 (4) ◽  
pp. 1059-1079
Author(s):  
Andre C. Chang ◽  
John R. Cleary

abstract Consistent precursors to PKKP from Novaya Zemlya explosions have been detected at the LASA seismic array in Montana. The precursory wave train is at least 65 sec long, and up to seven distinct and correlatable arrivals can be observed in the train. A similar investigation of E. Kazakh explosions, however, showed no evidence of precursors. A hypothesis of scattering on reflection at the core-mantle boundary provides a qualitative explanation of the observed precursors. The source of the scattered waves cannot be established with certainty, but the simplest interpretation is that they are generated by irregularities (“bumps”) on the boundary itself. The absence of precursors from E. Kazakh explosions is at least partly explicable in terms of the lower magnitudes of these events, but could be a result also of regional variation in the scattering properties of the core-mantle boundary.


2020 ◽  
Vol 222 (2) ◽  
pp. 1423-1432
Author(s):  
Andreas Nilsson ◽  
Neil Suttie ◽  
Monika Korte ◽  
Richard Holme ◽  
Mimi Hill

SUMMARY Observations of changes in the geomagnetic field provide unique information about processes in the outer core where the field is generated. Recent geomagnetic field reconstructions based on palaeomagnetic data show persistent westward drift at high northern latitudes at the core–mantle boundary (CMB) over the past 4000 yr, as well as intermittent occurrence of high-latitude weak or reverse flux patches. To further investigate these features, we analysed time-longitude plots of a processed version of the geomagnetic field model pfm9k.1a, filtered to remove quasi-stationary features of the field. Our results suggest that westward drift at both high northern and southern latitudes of the CMB have been a persistent feature of the field over the past 9000 yr. In the Northern Hemisphere we detect two distinct signals with drift rates of 0.09° and 0.25° yr−1 and dominant zonal wavenumbers of m = 2 and 1, respectively. Comparisons with other geomagnetic field models support these observations but also highlight the importance of sedimentary data that provide crucial information on high-latitude geomagnetic field variations. The two distinct drift signals detected in the Northern Hemisphere can largely be decomposed into two westward propagating waveforms. We show that constructive interference between these two waveforms accurately predicts both the location and timing of previously observed high-latitude weak/reverse flux patches over the past 3–4 millennia. In addition, we also show that the 1125-yr periodicity signal inferred from the waveform interference correlates positively with variations in the dipole tilt over the same time period. The two identified drift signals may partially be explained by the westward motion of high-latitude convection rolls. However, the dispersion relation might also imply that part of the drift signal could be caused by magnetic Rossby waves riding on the mean background flow.


2020 ◽  
Author(s):  
Yanhao Lin ◽  
Qingyang Hu ◽  
Jing Yang ◽  
Yue Meng ◽  
Yukai Zhuang ◽  
...  

Abstract Subduction of oceanic lithosphere transports surface water into the mantle where it can have remarkable effects, but how much can be cycled down into the deep mantle, and potentially to the core, remains ambiguous. Recent studies show that dense SiO2 in the form of stishovite, a major phase in subducted oceanic crust at depths greater than ~300 km, has the potential to host and carry water into the lower mantle. We investigate the hydration of stishovite and its higher-pressure polymorphs, CaCl2-type SiO2 and seifertite, in experiments at pressures of 44–152 GPa and temperatures of ~1380–3300 K. We quantify the water storage capacity of these dense SiO2 phases at high pressure and find that water stabilizes CaCl2-type SiO2 to pressures beyond the base of the mantle. We parametrize the P-T dependence of water capacity and model H2O storage in SiO2 along a lower mantle geotherm. Dehydration of slab mantle in cooler slabs in the transition zone can release fluids that hydrate stishovite in oceanic crust. Hydrous SiO2 phases are stable along a geotherm and progressively dehydrate with depth, potentially causing partial melting or silica enrichment in the lower mantle. Oceanic crust can transport ~0.2 wt% water to the core-mantle boundary region where, upon heating, it can initiate partial melting and react with the core to produce iron hydrides, providing plausible explanations for ultra-low velocity regions at the base of the mantle.


1979 ◽  
Vol 69 (4) ◽  
pp. 1039-1053
Author(s):  
Emile A. Okal ◽  
Robert J. Geller

abstract Profiles of SH waves diffracted around the core (Sd) for three deep events at stations across North America and the Atlantic (Δ = 92° to 152°) are used to determine the properties of the lower mantle in the vicinity of the core-mantle boundary (CMB). The S-wave velocity above the CMB is found to be βc = 7.22 ± 0.1 km/sec, in agreement with gross earth models, but higher than previously reported values from direct measurements of Sd. The frequency imdependence of the Sd ray parameter argues strongly against the possibility of a low-velocity zone immediately above the core mantle boundary. We compute synthetic seismograms for Sd by summing normal modes. A comparison of the present data with a synthetic profile for earth model 1066A gives excellent agreement at periods greater than 45 seconds. Synthetics for other models are used to substantially constrain the possibility of significant rigidity of the uppermost layer of the core.


1973 ◽  
Vol 63 (6-1) ◽  
pp. 2047-2070 ◽  
Author(s):  
Goetz G. R. Buchbinder ◽  
Georges Poupinet

Abstract Two large nuclear explosions produced a considerable number of PcP phases. Analysis of the P and PcP travel times shows a scatter of ±2 sec. It is pointed out that PcP and P times must be considered together to eliminate gross upper mantle effects on the travel times. On a worldwide basis, the PcP peak-to-peak amplitudes exhibit a scatter of up to one order of magnitude, and, thus, the reflection coefficient of the core-mantle boundary (cmb) may not be determined with any significance from them. Comparing the wave form of PcP and the wave form of P waves convolved with thin-layered models of the cmb suggests that the cmb may be approximated by a thin high-impedance liquid layer of several kilometers in thickness embedded between the mantle and the core. Such a model can explain observed dilatational arrivals and a small decrease in amplitude near Δ ≈ 30°. The data do not permit exact determination of the model parameters because of uncertainty in the data and insensitivity of the method and because the cmb also may be laterally inhomogeneous. The frequency-dependence of the reflection and transmission coefficients of a layered cmb would have serious effects on the determination of inner core parameters.


1971 ◽  
Vol 61 (4) ◽  
pp. 1051-1059
Author(s):  
A. L. Hales ◽  
J. L. Roberts

abstract Earlier studies of the velocity distribution in the outer core have been based on the travel times of SKS.SKS arrivals can only be observed satisfactorily for arc distances at the surface greater than 85°. This lower limit of observation of SKS corresponds to an arc distance of 40.2° within the core. Thus the velocities in the outermost 250 km of the core are based upon an extrapolation. We have used observations of the difference in time of arrival of SKKS and SKS to obtain core travel times extending the range of observation down to a Δ within the core of about 14°. The velocity distribution thus found is significantly lower than those of Jeffreys (Bullen, 1963) and Randall (in press) near the core mantle boundary.


2020 ◽  
Author(s):  
Mioara Mandea ◽  
Veronique Dehant ◽  
Anny Cazenave

<div> <p>To understand the processes involved in the deep interior of the Earth and explaining its evolution, in particular the dynamics of the Earth’s fluid iron-rich outer core, only indirect satellite and ground observations are available. They each provide invaluable information about the core flow but are incomplete on their own:</p> <p>-        The time dependent magnetic field, originating mainly within the core, can be used to infer the motions of the fluid at the top of the core on decadal and subdecadal time scales.</p> <p>-        The time dependent gravity field variations that reflect changes in the mass distribution within the Earth and at its surface occur on a broad range of time scales. Decadal and interannual variations include the signature of the flow inside the core, though they are largely dominated by surface contributions related to the global water cycle and climate-driven land ice loss.</p> <p>-        Earth rotation changes (or variations in the length of the day) also occur on these time scales, and are largely related to the core fluid motions through exchange of angular momentum between the core and the mantle at the core-mantle boundary.</p> <p>Here, we present the main activities proposed in the frame of the GRACEFUL ERC project, which aims to combine information about the core deduced from the gravity field, from the magnetic field and from the Earth rotation in synergy, in order to examine in unprecedented depth the dynamical processes occurring inside the core and at the core-mantle boundary.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document