scholarly journals A base-pairing interaction between U2 and U6 small nuclear RNAs occurs in > 150S complexes in HeLa cell extracts: implications for the spliceosome assembly pathway.

1993 ◽  
Vol 90 (15) ◽  
pp. 7139-7143 ◽  
Author(s):  
D. A. Wassarman ◽  
J. A. Steitz
2015 ◽  
Vol 290 (36) ◽  
pp. 21821-21832 ◽  
Author(s):  
Leena Sathe ◽  
Cheryl Bolinger ◽  
M. Amin-ul Mannan ◽  
Thomas E. Dever ◽  
Madhusudan Dey

1993 ◽  
Vol 290 (2) ◽  
pp. 595-600 ◽  
Author(s):  
J R Patton

The formation of pseudouridine (psi) in human U1, U2 and U5 small nuclear RNAs (snRNAs) was investigated using HeLa cell extracts. Unmodified snRNAs were synthesized in vitro and the extent of psi formation was determined after incubation in cell extracts. The formation of psi on labelled substrates was monitored in the presence of 5-fluorouracil (5-FU)-containing snRNAs as inhibitors of psi formation. The conversion of uridine to psi was inhibited only when the cognate 5-FU-containing inhibitor snRNA was included in the reaction. For example, 5-FU-containing U1 RNA inhibited psi formation in unmodified U1 RNA, but not in (unmodified) U2 or U5 RNAs. The results suggest that there are at least three activities that form psi in these snRNAs. The 5-FU-containing RNAs were stable during incubation in the cell extracts. A 12-fold molar excess of unlabelled U1 RNA did not inhibit psi formation on a labelled U1 RNA substrate, whereas a 3-fold molar excess of 5-FU-containing U1 RNA nearly abolished psi formation on the U1 substrate. The fact that 5-FU-containing snRNAs are potent inhibitors of psi formation in these pre-mRNA splicing cofactors raises the possibility that this is related to the cytotoxicity of fluoropyrimidines in cancer chemotherapy.


2015 ◽  
Vol 59 (3) ◽  
pp. 310-315 ◽  
Author(s):  
Meiwen Cao ◽  
Ningning Wang ◽  
Peng Zhou ◽  
Yawei Sun ◽  
Jiqian Wang ◽  
...  

1997 ◽  
Vol 17 (12) ◽  
pp. 7178-7185 ◽  
Author(s):  
Q Huang ◽  
M R Jacobson ◽  
T Pederson

The spliceosomal small nuclear RNAs U1, U2, U4, and U5 are transcribed by RNA polymerase II as precursors with extensions at their 3' ends. The 3' processing of these pre-snRNAs is not understood in detail. Two pathways of pre-U2 RNA 3' processing in vitro were revealed in the present investigation by using a series of human wild-type and mutant pre-U2 RNAs. Substrates with wild-type 3' ends were initially shortened by three or four nucleotides (which is the first step in vivo), and the correct mature 3' end was then rapidly generated. In contrast, certain mutant pre-U2 RNAs displayed an aberrant 3' processing pathway typified by the persistence of intermediates representing cleavage at each internucleoside bond in the precursor 3' extension. Comparison of the wild-type and mutant pre-U2 RNAs revealed a potential base-pairing interaction between nucleotides in the precursor 3' extension and a sequence located between the Sm domain and stem-loop III of U2 RNA. Substrate processing competition experiments using a highly purified pre-U2 RNA 3' processing activity suggested that only RNAs capable of this base-pairing interaction had high affinity for the pre-U2 RNA 3' processing enzyme. The importance of this postulated base-pairing interaction between the precursor 3' extension and the internal region between the Sm domain and stem-loop III was confirmed by the results obtained with a compensatory substitution that restores the base pairing, which displayed the normal 3' processing reaction. These results implicate a precursor-specific base-paired structure involving sequences on both sides of the mature cleavage site in the 3' processing of human U2 RNA.


Sign in / Sign up

Export Citation Format

Share Document