scholarly journals A Novel Long Distance Base-pairing Interaction in Human Immunodeficiency Virus Type 1 RNA Occludes the Gag Start Codon

2002 ◽  
Vol 278 (13) ◽  
pp. 11601-11611 ◽  
Author(s):  
Truus E. M. Abbink ◽  
Ben Berkhout
2009 ◽  
Vol 83 (11) ◽  
pp. 5956-5960 ◽  
Author(s):  
Guylaine Haché ◽  
Truus E. M. Abbink ◽  
Ben Berkhout ◽  
Reuben S. Harris

ABSTRACT APOBEC3G restricts Vif-deficient human immunodeficiency virus type 1 (HIV-1) by deaminating viral cDNA cytosines to uracils. This promutagenic activity is counteracted by HIV-1 Vif, which is a natural APOBEC3G antagonist. However, we previously reported that Vif-deficient HIV-1 could evolve resistance to APOBEC3G by a novel mechanism requiring an A200-to-C/T transition mutation and Vpr inactivation. A pyrimidine at nucleotide 200 in the untranslated leader region contributed to resistance by increasing virus particle production, which resulted in fewer APOBEC3G molecules per particle. Here we show that the A200-to-C/T mutation functions posttranscriptionally by inactivating an upstream start codon, which in turn enables optimal viral mRNA translation from canonical start codons.


2007 ◽  
Vol 81 (8) ◽  
pp. 4002-4011 ◽  
Author(s):  
Michael D. Moore ◽  
William Fu ◽  
Olga Nikolaitchik ◽  
Jianbo Chen ◽  
Roger G. Ptak ◽  
...  

ABSTRACT Frequent human immunodeficiency virus type 1 (HIV-1) recombination occurs during DNA synthesis when portions of the two copackaged RNAs are used as templates to generate a hybrid DNA copy. Therefore, the frequency of copackaging of genomic RNAs from two different viruses (heterozygous virion formation) affects the generation of genotypically different recombinants. We hypothesized that the selection of copackaged RNA partners is largely determined by Watson-Crick pairing at the dimer initiation signal (DIS), a 6-nucleotide palindromic sequence at the terminal loop of stem-loop 1 (SL1). To test our hypothesis, we examined whether heterozygous virion formation could be encouraged by manipulation of the DIS. Three pairs of viruses were generated with compensatory DIS mutations, designed so that perfect DIS base pairing could only occur between RNAs derived from different viruses, not between RNAs from the same virus. We observed that vector pairs with compensatory DIS mutations had an almost twofold increase in recombination rates compared with wild-type viruses. These data suggest that heterozygous virion formation was enhanced in viruses with compensatory DIS mutations (from 50% to more than 90% in some viral pairings). The role of the SL1 stem in heterozygous virion formation was also tested; our results indicated that the intermolecular base pairing of the stem sequences does not affect RNA partner selection. In summary, our results demonstrate that the Watson-Crick pairing of the DIS is a major determinant in the selection of the copackaged RNA partner, and altering the base pairing of the DIS can change the proportion of heterozygous viruses in a viral population. These results also strongly support the hypothesis that HIV-1 RNA dimers are formed prior to encapsidation.


2006 ◽  
Vol 80 (13) ◽  
pp. 6441-6457 ◽  
Author(s):  
Justin R. Bailey ◽  
Ahmad R. Sedaghat ◽  
Tara Kieffer ◽  
Timothy Brennan ◽  
Patricia K. Lee ◽  
...  

ABSTRACT Antiretroviral therapy can reduce human immunodeficiency virus type 1 (HIV-1) viremia to below the detection limit of ultrasensitive clinical assays (50 copies of HIV-1 RNA/ml). However, latent HIV-1 persists in resting CD4+ T cells, and low residual levels of free virus are found in the plasma. Limited characterization of this residual viremia has been done because of the low number of virions per sample. Using intensive sampling, we analyzed residual viremia and compared these viruses to latent proviruses in resting CD4+ T cells in peripheral blood. For each patient, we found some viruses in the plasma that were identical to viruses in resting CD4+ T cells by pol gene sequencing. However, in a majority of patients, the most common viruses in the plasma were rarely found in resting CD4+ T cells even when the resting cell compartment was analyzed with assays that detect replication-competent viruses. Despite the large diversity of pol sequences in resting CD4+ T cells, the residual viremia was dominated by a homogeneous population of viruses with identical pol sequences. In the most extensively studied case, a predominant plasma sequence was also found in analysis of the env gene, and linkage by long-distance reverse transcriptase PCR established that these predominant plasma sequences represented a single predominant plasma virus clone. The predominant plasma clones were released for months to years without evident sequence change. Thus, in some patients on antiretroviral therapy, the major mechanism for residual viremia involves prolonged production of a small number of viral clones without evident evolution, possibly by cells other than circulating CD4+ T cells.


2007 ◽  
Vol 88 (10) ◽  
pp. 2780-2792 ◽  
Author(s):  
Kathryn H. Richards ◽  
Paul R. Clapham

The human immunodeficiency virus type 1 (HIV-1) vpu protein increases the release of virus particles from infected cells. Mutations that abrogate vpu function have a profound effect on HIV-1 replication in primary macrophage cultures. About 1.24 % of primary isolates in the HIV databases have vpu start-codon mutations. In addition, the envelope of the AD8 isolate was reported to compensate for the lack of vpu, whilst the YU-2 virus (cloned directly from the brain tissue of an infected individual) is macrophage-tropic, despite having a vpu start-codon mutation. These observations raise the possibility that envelopes evolve to compensate for the loss of vpu function in vivo. Chimeric vpu + and vpu − replication-competent clones were constructed that contained the envelopes of SF162, AD8 or YU-2. Macrophages were infected with these chimeras and virus release was measured over time by a reverse transcriptase ELISA. It was found that vpu-deficient chimeras carrying AD8 and YU-2 envelopes were consistently released at lower levels than their wild-type (wt) vpu counterparts, indicating that these envelopes did not compensate for the lack of vpu. Non-chimeric vpu + and vpu − AD8 and YU-2 followed similar patterns, although replication by vpu-deficient AD8 was variable, with virion release reaching 60 % of that recorded for AD8 with a wt vpu. In summary, no evidence was found that the AD8 or YU-2 envelopes can compensate for the lack of vpu for replication in macrophages.


Sign in / Sign up

Export Citation Format

Share Document