pairing interaction
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 23)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 104 (14) ◽  
Author(s):  
K. Ishida ◽  
S. Matsuzaki ◽  
M. Manago ◽  
T. Hattori ◽  
S. Kitagawa ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. 1099-1103 ◽  
Author(s):  
M. Mougeot ◽  
D. Atanasov ◽  
J. Karthein ◽  
R. N. Wolf ◽  
P. Ascher ◽  
...  

AbstractThe tin isotope 100Sn is of singular interest for nuclear structure due to its closed-shell proton and neutron configurations. It is also the heaviest nucleus comprising protons and neutrons in equal numbers—a feature that enhances the contribution of the short-range proton–neutron pairing interaction and strongly influences its decay via the weak interaction. Decay studies in the region of 100Sn have attempted to prove its doubly magic character1 but few have studied it from an ab initio theoretical perspective2,3, and none of these has addressed the odd-proton neighbours, which are inherently more difficult to describe but crucial for a complete test of nuclear forces. Here we present direct mass measurements of the exotic odd-proton nuclide 100In, the beta-decay daughter of 100Sn, and of 99In, with one proton less than 100Sn. We use advanced mass spectrometry techniques to measure 99In, which is produced at a rate of only a few ions per second, and to resolve the ground and isomeric states in 101In. The experimental results are compared with ab initio many-body calculations. The 100-fold improvement in precision of the 100In mass value highlights a discrepancy in the atomic-mass values of 100Sn deduced from recent beta-decay results4,5.


2021 ◽  
Author(s):  
Neda Ebrahimian ◽  
Mehran Khosrojerdi ◽  
Reza Afzali

Abstract By considering transition-metal (Shiba-Rusinov model) and rare-earth metal impurities (Abrikosov-Gorkov theory) effect on a many-body system, i.e., a BCS s-wave superconductor, quantum bipartite entanglement of two electrons of the Cooper pairs in terms of the exchange interaction, J, the potential scattering, V(playing an important role, unexpectedly), and the distance of two electron spins of the Cooper pair is calculated at zero temperature by using two-electron spin-space density matrix (Werner state). In transition-metal case, we find new quantum phase transitions (QPTs). The changes of J, which causes to have localized excited state, V and the pairing interaction (via energy gap) lead to the displacement of the QPTs (interactions act in the same direction, however sometimes the pairing interaction causes the competition with other interactions), regardless of their effects on the value of concurrence. Determining the allowable values of all interactions by itself is not possible, due to the smallness of the perturbed Green’s functions (appearing in the density matrix). For non-magnetic and magnetic (rare-earth) impurity cases, concurrence versus the distance and collision times is discussed for all finite and infinite Debye frequency. The quantum correlation, instability of the system and what's more important QPT can be tuned by the impurity.


2021 ◽  
Vol 6 (2) ◽  
pp. 14
Author(s):  
Sara Conti ◽  
Andrea Perali ◽  
François M. Peeters ◽  
David Neilson

Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.


2021 ◽  
Vol 3 (2) ◽  
pp. 253-261
Author(s):  
Angel Ricardo Plastino ◽  
Gustavo Luis Ferri ◽  
Angelo Plastino

We employ two different Lipkin-like, exactly solvable models so as to display features of the competition between different fermion–fermion quantum interactions (at finite temperatures). One of our two interactions mimics the pairing interaction responsible for superconductivity. The other interaction is a monopole one that resembles the so-called quadrupole one, much used in nuclear physics as a residual interaction. The pairing versus monopole effects here observed afford for some interesting insights into the intricacies of the quantum many body problem, in particular with regards to so-called quantum phase transitions (strictly, level crossings).


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peizhi Mai ◽  
Giovanni Balduzzi ◽  
Steven Johnston ◽  
Thomas A. Maier

AbstractThe nature of the effective interaction responsible for pairing in the high-temperature superconducting cuprates remains unsettled. This question has been studied extensively using the simplified single-band Hubbard model, which does not explicitly consider the orbital degrees of freedom of the relevant CuO2 planes. Here, we use a dynamical cluster quantum Monte Carlo approximation to study the orbital structure of the pairing interaction in the three-band Hubbard model, which treats the orbital degrees of freedom explicitly. We find that the interaction predominately acts between neighboring copper orbitals, but with significant additional weight appearing on the surrounding bonding molecular oxygen orbitals. By explicitly comparing these results to those from the simpler single-band Hubbard model, our study provides strong support for the single-band framework for describing superconductivity in the cuprates.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1346
Author(s):  
Cheng-Hsin Huang ◽  
Tong Wai Wong ◽  
Chen-Hsu Yu ◽  
Jing-Yuan Chang ◽  
Shing-Jong Huang ◽  
...  

Cross-strand lateral ion-pairing interactions are important for antiparallel β-sheet stability. Statistical studies suggested that swapping the position of cross-strand lateral residues should not significantly affect the interaction. Herein, we swapped the position of ammonium- and carboxylate-containing residues with different side-chain lengths in a cross-strand lateral ion-pairing interaction in a β-hairpin. The peptides were analyzed by 2D-NMR. The fraction folded population and folding free energy were derived from the chemical shift data. The ion-pairing interaction energy was derived using double mutant cycle analysis. The general trends for the fraction folded population and interaction energetics remained similar upon swapping the position of the interacting charged residues. The most stabilizing cross-strand interactions were between short residues, similar to the unswapped study. However, the fraction folded populations for most of the swapped peptides were higher compared to the corresponding unswapped peptides. Furthermore, subtle differences in the ion-pairing interaction energy upon swapping were observed, most likely due to the “unleveled” relative positioning of the interacting residues created by the inherent right-handed twist of the structure. These results should be useful for developing functional peptides that rely on lateral ion-pairing interactions across antiparallel β-strands.


2020 ◽  
Vol 1643 ◽  
pp. 012144
Author(s):  
A. M. Romero ◽  
J. Dobaczewski ◽  
A. Pastore

Sign in / Sign up

Export Citation Format

Share Document