primer binding site
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 34)

H-INDEX

37
(FIVE YEARS 3)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Antoinette C. van der Kuyl

Simian endogenous retrovirus, SERV, is a successful germ line invader restricted to Old World monkey (OWM) species. (1) Background: The availability of high-quality primate genomes warrants a study of the characteristics, evolution, and distribution of SERV proviruses. (2) Methods: Cercopithecinae OWM genomes from public databases were queried for the presence of full-length SERV proviruses. A dataset of 81 Cer-SERV genomes was generated and analyzed. (3) Results: Full-length Cer-SERV proviruses were mainly found in terrestrial OWM, and less so in arboreal, forest- dwelling monkeys. Phylogenetic analysis confirmed the existence of two genotypes, Cer-SERV-1 and Cer-SERV-2, with Cer-SERV-1 showing evidence of recent germ-line expansions. Long Terminal Repeat (LTR) variation indicated that most proviruses were of a similar age and were estimated to be between <0.3 and 10 million years old. Integrations shared between species were relatively rare. Sequence analysis further showed extensive CpG methylation-associated mutations, variable Primer Binding Site (PBS) use with Cer-SERV-1 using PBSlys3 and Cer-SERV-2 using PBSlys1,2, and the recent gain of LTR motifs for transcription factors active during embryogenesis in Cer-SERV-1. (4) Conclusions: sequence analysis of 81 SERV proviruses from Cercopithecinae OWM genomes provides evidence for the adaptation of this retrovirus to germ line reproduction.


2021 ◽  
Vol 119 (1) ◽  
pp. e2105153118
Author(s):  
Gatikrushna Singh ◽  
Bradley Seufzer ◽  
Zhenwei Song ◽  
Dora Zucko ◽  
Xiao Heng ◽  
...  

Appended to the 5′ end of nascent RNA polymerase II transcripts is 7-methyl guanosine (m7G-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated m7G-cap and that the down-regulation of the trimethylguanosine synthetase-1–reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude. HIV-1 cap hypermethylation required nuclear RNA helicase A (RHA)/DHX9 interaction with the shape of the 5′ untranslated region (UTR) primer binding site (PBS) segment. Down-regulation of RHA or the anomalous shape of the PBS segment abrogated hypermethylated caps and derepressed eIF4E binding for virion protein translation during global down-regulation of host translation. mTOR inhibition was detrimental to HIV-1 proliferation and attenuated Tat, Rev, and Nef synthesis. This study identified mutually exclusive translation pathways and the calibration of virion structural/accessory protein synthesis with de novo synthesis of the viral regulatory proteins. The hypermethylation of select, viral mRNA resulted in CBC exchange to heterodimeric CBP80/NCBP3 that expanded the functional capacity of HIV-1 in immune cells.


2021 ◽  
Author(s):  
Redmond Smyth ◽  
Liqing Ye ◽  
Anne-Sophie Gribling ◽  
Patrick Bohn ◽  
Anuja Kibe ◽  
...  

Abstract Genome dimerization is a conserved feature of retroviral replication and a critical step in the HIV-1 life cycle, but how it is regulated is incompletely understood. Here, we developed FARS-seq (Functional Analysis of RNA Structure) to comprehensively identify sequences and structures within the HIV-1 5’UTR influencing dimerization. We found nucleotides important for dimerization throughout the HIV-1 5’UTR and identified distinct structural conformations in monomeric and dimeric RNA. The dimer displayed TAR, PolyA, PBS, and SL1-SL3 as stem-loops. In the monomer, SL1 was dramatically reconfigured into long- and short-range base-pairings with polyA and PBS, respectively. The polyA-SL1 interaction disrupts the major packaging motifs, and the PBS-SL1 interaction functionally couples the primer binding site with dimerization and Pr55Gag binding. Altogether, our data provide insights into late stages of HIV-1 life cycle and a mechanistic explanation for the link between RNA dimerization and packaging.


Author(s):  
Antoinette C. van der Kuyl

Simian endogenous retrovirus, SERV, is a successful germ line invader restricted to Old World monkey (OWM) species. (1) Background: The availability of high quality primate genomes warrants a study of the characteristics, evolution and distribution of SERV proviruses; (2) Methods: Cercopithecinae OWM genomes from public databases were queried for the presence of full length SERV proviruses. A dataset of 81 Cer-SERV genomes was generated and analyzed; (3) Results: Full length Cer-SERV proviruses were mainly found in terrestrial OWM, and less so in arboreal, forest- dwelling monkeys. Phylogenetic analysis confirmed the existence of two genotypes, Cer-SERV-1 and Cer-SERV-2, with Cer-SERV-1 showing evidence of recent germ line expansions. Long Terminal Repeat (LTR) variation indicated that most proviruses were of a similar age, and were estimated to be between &amp;lt;0.3 and 10 million years old. Integrations shared between species were relatively rare. Sequence analysis further showed extensive CpG methylation-associated mutation, variable Primer Binding Site (PBS) use with Cer-SERV-1 using PBSlys3 and Cer-SERV-2 using PBSlys1,2, and the recent gain of LTR motifs for transcription factors active during embryogenesis in Cer-SERV-1; (4) Conclusions: sequence analysis of 81 SERV proviruses from Cercopithecinae OWM genomes provides evidence for the adaptation of this retrovirus to germ line reproduction.


2021 ◽  
Author(s):  
Sun Hee Rosenthal ◽  
Anna Gerasimova ◽  
Rolando Ruiz-Vega ◽  
Kayla Livingston ◽  
Ron M. Kagan ◽  
...  

Abstract Monitoring new mutations in SARS-CoV-2 provides crucial information for identifying diagnostic and therapeutic targets and important insights to achieve a more effective COVID-19 control strategy. Next generation sequencing (NGS) technologies have been widely used for whole genome sequencing of SARS-CoV-2. While various NGS methods have been reported, one chief limitation has been the complexity of the workflow, limiting the scalability. Here, we overcome this limitation by designing a workflow optimized for high-throughput studies. The workflow utilizes modified ARTIC network v3 primers for SARS-CoV-2 whole genome amplification. NGS libraries were prepared by a 2-step PCR method, similar to a previously reported tailed PCR method, with further optimizations to improve amplicon balance, to minimize amplicon dropout for viral genomes harboring primer-binding site mutation(s), and to integrate robotic liquid handlers. Validation studies demonstrated that the optimized workflow can process up to 2,688 samples in a single sequencing run without compromising sensitivity and accuracy and with fewer amplicon dropout events compared to the standard ARTIC protocol. We additionally report results for over 65,000 SARS-CoV-2 whole genome sequences from clinical specimens collected in the United States between January and September of 2021, as part of an ongoing national genomics surveillance effort.


BioTech ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 23
Author(s):  
Oxana Khapilina ◽  
Ainur Turzhanova ◽  
Alevtina Danilova ◽  
Asem Tumenbayeva ◽  
Vladislav Shevtsov ◽  
...  

Endemic species are especially vulnerable to biodiversity loss caused by isolation or habitat specificity, small population size, and anthropogenic factors. Endemic species biodiversity analysis has a critically important global value for the development of conservation strategies. The rare onion Allium ledebourianum is a narrow-lined endemic species, with natural populations located in the extreme climatic conditions of the Kazakh Altai. A. ledebourianum populations are decreasing everywhere due to anthropogenic impact, and therefore, this species requires preservation and protection. Conservation of this rare species is associated with monitoring studies to investigate the genetic diversity of natural populations. Fundamental components of eukaryote genome include multiple classes of interspersed repeats. Various PCR-based DNA fingerprinting methods are used to detect chromosomal changes related to recombination processes of these interspersed elements. These methods are based on interspersed repeat sequences and are an effective approach for assessing the biological diversity of plants and their variability. We applied DNA profiling approaches based on conservative sequences of interspersed repeats to assess the genetic diversity of natural A. ledebourianum populations located in the territory of Kazakhstan Altai. The analysis of natural A. ledebourianum populations, carried out using the DNA profiling approach, allowed the effective differentiation of the populations and assessment of their genetic diversity. We used conservative sequences of tRNA primer binding sites (PBS) of the long-terminal repeat (LTR) retrotransposons as PCR primers. Amplification using the three most effective PBS primers generated 628 PCR amplicons, with an average of 209 amplicons. The average polymorphism level varied from 34% to 40% for all studied samples. Resolution analysis of the PBS primers showed all of them to have high or medium polymorphism levels, which varied from 0.763 to 0.965. Results of the molecular analysis of variance showed that the general biodiversity of A. ledebourianum populations is due to interpopulation (67%) and intrapopulation (33%) differences. The revealed genetic diversity was higher in the most distant population of A. ledebourianum LD64, located on the Sarymsakty ridge of Southern Altai. This is the first genetic diversity study of the endemic species A. ledebourianum using DNA profiling approaches. This work allowed us to collect new genetic data on the structure of A. ledebourianum populations in the Altai for subsequent development of preservation strategies to enhance the reproduction of this relict species. The results will be useful for the conservation and exploitation of this species, serving as the basis for further studies of its evolution and ecology.


2021 ◽  
Author(s):  
Fusheng Xiong ◽  
Wayne D Frasch

Abstract ΩqPCR determines absolute telomere length in kb units from single cells. Accuracy and precision of ΩqPCR were assessed using 800 bp and 1600 bp synthetic telomeres inserted into plasmids, which were measured to be 819 ± 19.6 and 1590 ± 42.3 bp, respectively. This is the first telomere length measuring method verified in this way. The approach uses Ω-probes, a DNA strand containing sequence information that enables: (i) hybridization with the telomere via the 3′ and 5′ ends that become opposed; (ii) ligation of the hybridized probes to circularize the Ω-probes and (iii) circularized-dependent qPCR due to sequence information for a forward primer, and for a reverse primer binding site, and qPCR hydrolysis probe binding. Read through of the polymerase during qPCR occurs only in circularized Ω-probes, which quantifies their number that is directly proportional to telomere length. When used in concert with information about the cell cycle stage from a single-copy gene, and ploidy, the MTL of single cells measured by ΩqPCR was consistent with that obtained from large sample sizes by TRF.


2021 ◽  
pp. 1-22
Author(s):  
Elizaveta Smirnova ◽  
Darja Savenkova ◽  
Alexander Milovanov ◽  
Andrej Zvyagin ◽  
Evgeniya Smirnova ◽  
...  

Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Venkat R. K. Yedavalli ◽  
Akash Patil ◽  
Janay Parrish ◽  
Christine A. Kozak

Abstract Background Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. Results Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5’ and 3’ LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. Conclusions XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.


Sign in / Sign up

Export Citation Format

Share Document