scholarly journals The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei.

1995 ◽  
Vol 92 (19) ◽  
pp. 8773-8777 ◽  
Author(s):  
M. J. Nirenberg ◽  
Y. Liu ◽  
D. Peter ◽  
R. H. Edwards ◽  
V. M. Pickel
2001 ◽  
Vol 152 (6) ◽  
pp. 1159-1168 ◽  
Author(s):  
Clarissa L. Waites ◽  
Anand Mehta ◽  
Philip K. Tan ◽  
Gary Thomas ◽  
Robert H. Edwards ◽  
...  

The release of biogenic amines from large dense core vesicles (LDCVs) depends on localization of the vesicular monoamine transporter VMAT2 to LDCVs. We now find that a cluster of acidic residues including two serines phosphorylated by casein kinase 2 is required for the localization of VMAT2 to LDCVs. Deletion of the acidic cluster promotes the removal of VMAT2 from LDCVs during their maturation. The motif thus acts as a signal for retention on LDCVs. In addition, replacement of the serines by glutamate to mimic phosphorylation promotes the removal of VMAT2 from LDCVs, whereas replacement by alanine to prevent phosphorylation decreases removal. Phosphorylation of the acidic cluster thus appears to reduce the localization of VMAT2 to LDCVs by inactivating a retention mechanism.


2007 ◽  
Vol 293 (6) ◽  
pp. C1742-C1752 ◽  
Author(s):  
William H. Roden ◽  
Jason B. Papke ◽  
Johnnie M. Moore ◽  
Anne L. Cahill ◽  
Heather Macarthur ◽  
...  

In sympathetic neurons, it is well-established that the neurotransmitters, norepinephrine (NE), neuropeptide Y (NPY), and ATP are differentially coreleased from the same neurons. In this study, we determined whether synaptotagmin (syt) I, the primary Ca2+ sensor for regulated release, could function as the protein that differentially regulates release of these neurotransmitters. Plasmid-based RNA interference was used to specifically and stably silence expression of syt I in a model secretory cell line. Whereas stimulated release of NPY and purines was abolished, stimulated catecholamine (CA) release was only reduced by ∼50%. Although expression levels of tyrosine hydroxylase, the rate-limiting enzyme in the dopamine synthesis pathway, was unaffected, expression of the vesicular monoamine transporter 1 was reduced by 50%. To evaluate whether NPY and CAs are found within the same vesicles and whether syt I is found localized to each of these NPY- and CA-containing vesicles, we used immunocytochemistry to determine that syt I colocalized with large dense core vesicles, with NPY, and with CAs. Furthermore, both CAs and NPY colocalized with one another and with large dense core vesicles. Electron micrographs show that large dense core vesicles are synthesized and available for release in cells that lack syt I. These results are consistent with syt I regulating differential release of transmitters.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


1999 ◽  
Vol 337 (2) ◽  
pp. 193 ◽  
Author(s):  
Fiona WATSON ◽  
Damian G. DEAVALL ◽  
Janet A. MACRO ◽  
Rachel KIERNAN ◽  
Rod DIMALINE

2017 ◽  
Vol 28 (26) ◽  
pp. 3870-3880 ◽  
Author(s):  
Blake H. Hummer ◽  
Noah F. de Leeuw ◽  
Christian Burns ◽  
Lan Chen ◽  
Matthew S. Joens ◽  
...  

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.


2011 ◽  
Vol 21 (4) ◽  
pp. 341-344 ◽  
Author(s):  
Gil Zalsman ◽  
Dorit Aslanov-Farbstein ◽  
Moshe Rehavi ◽  
Netta Roz ◽  
Robert Vermeiren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document