scholarly journals Identity of adenylyl cyclase isoform determines the rate of cell cycle progression in NIH 3T3 cells

1998 ◽  
Vol 95 (25) ◽  
pp. 15084-15089 ◽  
Author(s):  
M. J. Smit ◽  
D. Verzijl ◽  
R. Iyengar
1999 ◽  
Vol 19 (7) ◽  
pp. 4623-4632 ◽  
Author(s):  
Masahiro Hitomi ◽  
Dennis W. Stacey

ABSTRACT Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
André L. S. Cruz ◽  
Nina Carrossini ◽  
Leonardo K. Teixeira ◽  
Luis F. Ribeiro-Pinto ◽  
Patricia T. Bozza ◽  
...  

ABSTRACTIntracellular lipid accumulation has been associated with a poor prognosis in cancer. We have previously reported the involvement of lipid droplets in cell proliferation in colon cancer cells, suggesting a role for these organelles in cancer development. In this study, we evaluate the role of lipid droplets in cell cycle regulation and cellular transformation. Cell cycle synchronization of NIH 3T3 cells revealed increased numbers and dispersed distribution of lipid droplets specifically during S phase. Also, the transformed cell lineage NIH 3T3-H-rasV12showed an accumulation of both lipid droplets and PLIN2 protein above the levels in NIH 3T3 cells.PLIN2gene overexpression, however, was not able to induce NIH 3T3 cell transformation, disproving the hypothesis thatPLIN2is an oncogene. Furthermore, positive PLIN2 staining was strongly associated with highly proliferative Ki-67-positive areas in human colon adenocarcinoma tissue samples. Taken together, these results indicate that cell cycle progression is associated with tight regulation of lipid droplets, a process that is altered in transformed cells, suggesting the existence of a mechanism that connects cell cycle progression and cell proliferation with lipid accumulation.


1998 ◽  
Vol 95 (16) ◽  
pp. 9190-9195 ◽  
Author(s):  
Stefan Gaubatz ◽  
Jason G. Wood ◽  
David M. Livingston

E2F transcription factors play an important role in the regulation of cell cycle progression. We report here the cloning and characterization of an additional member of this family, E2F-6. E2F-6 lacks pocket protein binding and transactivation domains, and it is a potent transcriptional repressor that contains a modular repression domain at its carboxyl terminus. Overproduction of E2F-6 had no specific effect on cell cycle progression in asynchronously growing Saos2 and NIH 3T3 cells, but it inhibited entry into S phase of NIH 3T3 cells stimulated to exit G0. Taken together, these data suggest that E2F-6 can regulate a subset of E2F-dependent genes whose products are required for entry into the cell cycle but not for normal cell cycle progression.


Mutagenesis ◽  
2008 ◽  
Vol 24 (2) ◽  
pp. 133-141 ◽  
Author(s):  
J.-L. Fang ◽  
L. J. McGarrity ◽  
F. A. Beland

2005 ◽  
Vol 25 (9) ◽  
pp. 3535-3542 ◽  
Author(s):  
Phang-Lang Chen ◽  
Feng Liu ◽  
Suna Cai ◽  
Xiaoqin Lin ◽  
Aihua Li ◽  
...  

ABSTRACT CtIP interacts with a group of tumor suppressor proteins including RB (retinoblastoma protein), BRCA1, Ikaros, and CtBP, which regulate cell cycle progression through transcriptional repression as well as chromatin remodeling. However, how CtIP exerts its biological function in cell cycle progression remains elusive. To address this issue, we generated an inactivated Ctip allele in mice by inserting a neo gene into exon 5. The corresponding Ctip − / − embryos died at embryonic day 4.0 (E4.0), and the blastocysts failed to enter S phase but accumulated in G1, leading to a slightly elevated cell death. Mouse NIH 3T3 cells depleted of Ctip were arrested at G1 with the concomitant increase in hypophosphorylated Rb and Cdk inhibitors, p21. However, depletion of Ctip failed to arrest Rb − / − mouse embryonic fibroblasts (MEF) or human osteosarcoma Saos-2 cells at G1, suggesting that this arrest is RB dependent. Importantly, the life span of Ctip +/ − heterozygotes was shortened by the development of multiple types of tumors, predominantly, large lymphomas. The wild-type Ctip allele and protein remained detectable in these tumors, suggesting that haploid insufficiency of Ctip leads to tumorigenesis. Taken together, this finding uncovers a novel G1/S regulation in that CtIP counteracts Rb-mediated G1 restraint. Deregulation of this function leads to a defect in early embryogenesis and contributes, in part, to tumor formation.


1992 ◽  
Vol 12 (10) ◽  
pp. 4687-4693
Author(s):  
G Kalinec ◽  
A J Nazarali ◽  
S Hermouet ◽  
N Xu ◽  
J S Gutkind

The discovery of mutated, GTPase-deficient alpha subunits of Gs or Gi2 in certain human endocrine tumors has suggested that heterotrimeric G proteins play a role in the oncogenic process. Expression of these altered forms of G alpha s or G alpha i2 proteins in rodent fibroblasts activates or inhibits endogenous adenylyl cyclase, respectively, and causes certain alterations in cell growth. However, it is not clear whether growth abnormalities result from altered cyclic AMP synthesis. In the present study, we asked whether a recently discovered family of G proteins, Gq, which does not affect adenylyl cyclase activity, but instead mediates the activation of phosphatidylinositol-specific phospholipase C harbors transforming potential. We mutated the cDNA for the alpha subunit of murine Gq in codons corresponding to a region involved in binding and hydrolysis of GTP. Similar mutations unmask the transforming potential of p21ras or activate the alpha subunits of Gs or Gi2. Our results show that when expressed in NIH 3T3 cells, activating mutations convert G alpha q into a dominant acting oncogene.


1995 ◽  
Vol 15 (1) ◽  
pp. 552-560 ◽  
Author(s):  
M Hattori ◽  
N Tsukamoto ◽  
M S Nur-e-Kamal ◽  
B Rubinfeld ◽  
K Iwai ◽  
...  

We have cloned a novel cDNA (Spa-1) which is little expressed in the quiescent state but induced in the interleukin 2-stimulated cycling state of an interleukin 2-responsive murine lymphoid cell line by differential hybridization. Spa-1 mRNA (3.5 kb) was induced in normal lymphocytes following various types of mitogenic stimulation. In normal organs it is preferentially expressed in both fetal and adult lymphohematopoietic tissues. A Spa-1-encoded protein of 68 kDa is localized mostly in the nucleus. Its N-terminal domain is highly homologous to a human Rap1 GTPase-activating protein (GAP), and a fusion protein of this domain (SpanN) indeed exhibited GAP activity for Rap1/Rsr1 but not for Ras or Rho in vitro. Unlike the human Rap1 GAP, however, SpanN also exhibited GAP activity for Ran, so far the only known Ras-related GTPase in the nucleus. In the presence of serum, stable Spa-1 cDNA transfectants of NIH 3T3 cells (NIH/Spa-1) hardly overexpressed Spa-1 (p68), and they grew as normally as did the parental cells. When NIH/Spa-1 cells were serum starved to be arrested in the G1/G0 phase of the cell cycle, however, they, unlike the control cells, exhibited progressive Spa-1 p68 accumulation, and following the addition of serum they showed cell death resembling mitotic catastrophes of the S phase during cell cycle progression. The results indicate that the novel nuclear protein Spa-1, with a potentially active Ran GAP domain, severely hampers the mitogen-induced cell cycle progression when abnormally and/or prematurely expressed. Functions of the Spa-1 protein and its regulation are discussed in the context of its possible interaction with the Ran/RCC-1 system, which is involved in the coordinated nuclear functions, including cell division.


Sign in / Sign up

Export Citation Format

Share Document