oncogene expression
Recently Published Documents


TOTAL DOCUMENTS

769
(FIVE YEARS 42)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
Vol 6 (4) ◽  
pp. 255-262
Author(s):  
Syeda Hajra Fatima ◽  
Shashikala ◽  
Vijay Sreedhar ◽  
Uzma Viqar ◽  
Ahmed Minhajuddin

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Alix Warburton ◽  
Tovah E. Markowitz ◽  
Joshua P. Katz ◽  
James M. Pipas ◽  
Alison A. McBride

AbstractOncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.


Nature ◽  
2021 ◽  
Author(s):  
King L. Hung ◽  
Kathryn E. Yost ◽  
Liangqi Xie ◽  
Quanming Shi ◽  
Konstantin Helmsauer ◽  
...  
Keyword(s):  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 501-501
Author(s):  
Willem K. Smits ◽  
Carlo Vermeulen ◽  
Rico Hagelaar ◽  
Shunsuke Kimura ◽  
Eric Vroegindeweij ◽  
...  

Abstract Introduction. The CCCTC-binding factor (CTCF) regulates the 3D chromatin architecture by facilitating chromosomal loops and forming the boundaries of structural domains. In addition, CTCF is an important transcription factor and regulator of antigen receptor and T cell receptor recombination events. CTCF inactivating events have been found in various human cancers. Loss-of-heterozygosity (LOH) or inactivating missense mutations in specific zinc- fingers have been identified in many human cancers including sporadic breast cancer, prostate cancer, Wilms-tumors and acute lymphoblastic leukemia (ALL). Heterozygous deletions or point mutations have been identified in over half of the patients with breast cancer or uterine endometrial cancers, deregulating global gene expression by altering methylated genomic states and poor survival. Here, we investigated the functional significance and molecular-cytogenetic associations of CTCF aberrations in T-cell acute lymphoblastic leukemia patients. Methods. Biopsies from a cohort of 181 pediatric T-ALL patients who enrolled on DCOG or COALL protocols and/or their derivative patient-derived xenograft models were screened for alterations in global DNA copy number, methylation status, topologically associating domain organization and CTCF and cohesion binding patterns and changes in local TLX3 and BCL11B promoter enhancer loops using array-comparative genomic hybridization, single molecule Molecular Inversion Probe sequencing, targeted locus amplification, gene expression and DNA methylation microarrays, Hi-C sequencing, Chromatin Immunoprecipitation and/or real-time quantitative PCR. Ctcf f/fl mice 1 were crossed on a the Lck-cre transgenic background 2 to study the impact of Ctcf loss during early T-cell development. Results. We here describe that inactivation of CTCF can drive subtle and local genomic effects that elevate oncogene expression levels from driver chromosomal rearrangements. We find that for T cell acute lymphoblastic leukemia (T-ALL), heterozygous CTCF deletions or inactivating mutations are present in nearly 50 percent of t(5;14)(q35;q32.2) rearranged patients that positions the TLX3 oncogene in the vicinity of the BCL11B enhancer. Functional CTCF loss results in diminished expression of the αβ-lineage commitment factor BCL11B from the non-rearranged allele and γδ-lineage development. Unexpectedly, it also drives higher levels of the TLX3 oncogene from the translocated allele. We demonstrate that heterozygous CTCF aberrations specifically occur in TLX3-rearranged patients with distal breakpoints that preserve CTCF bindings sites in the translocation breakpoint areas in between the BCL11B enhancer and the TLX3 oncogene. We show that these intervening CTCF sites insulate TLX3 from the enhancer by forming competitive loops with TLX3. Upon loss of CTCF, or the deletion of the intervening CTCF sites, these competitive loops are weakened and loops with the BCL11B enhancer are stimulated, boosting TLX3 oncogene expression levels and leukemia burden in these T-ALL patients. Conclusions. CTCF aberrations are especially associated with t(5;14)(q35;q32.2) rearranged T-ALL patients who maintain TLX3-proximal CTCF sites reflects a necessity to neutralize these sites in order to topologically enable the distal BCL11B enhancer to interact with the TLX3 oncogene and to boost its expression. Collectively, this provides direct demonstration of a mechanism in which loss of CTCF result in removal of enhancer insulation that facilitates elevated levels of an oncogene in leukemia. References. 1. Heath H, Ribeiro de Almeida C, Sleutels F, et al. CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J. 2008;27(21):2839-2850. 2. Lee PP, Fitzpatrick DR, Beard C, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15(5):763-774. Disclosures Splinter: Cergentis BV: Current Employment. Van Eyndhoven: Agilent Technologies Netherland: Current Employment. Van Min: Cergentis BV: Current Employment. Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company.


2021 ◽  
Author(s):  
Alix Warburton ◽  
Tovah E. Markowitz ◽  
Joshua P Katz ◽  
James M. Pipas ◽  
Alison A McBride

Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy, or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation, and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here, we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites, but often only one driver site that expressed viral RNA. Since common fragile sites and active enhancer elements are cell-type specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites, and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration hotspots that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters, and accidental integration could promote viral oncogene expression and carcinogenesis.


Leukemia ◽  
2021 ◽  
Author(s):  
Roser Vilarrasa-Blasi ◽  
Núria Verdaguer-Dot ◽  
Laura Belver ◽  
Paula Soler-Vila ◽  
Renée Beekman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document