scholarly journals Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase

2000 ◽  
Vol 97 (24) ◽  
pp. 13080-13085 ◽  
Author(s):  
J. M. Caruthers ◽  
E. R. Johnson ◽  
D. B. McKay
2005 ◽  
Vol 150 (1) ◽  
pp. 58-68 ◽  
Author(s):  
K KURIMOTO ◽  
Y MUTO ◽  
N OBAYASHI ◽  
T TERADA ◽  
M SHIROUZU ◽  
...  

2016 ◽  
Vol 90 (10) ◽  
pp. 5200-5204 ◽  
Author(s):  
Myra Hosmillo ◽  
Trevor R. Sweeney ◽  
Yasmin Chaudhry ◽  
Eoin Leen ◽  
Stephen Curry ◽  
...  

The eukaryotic initiation factor 4A (eIF4A) is a DEAD box helicase that unwinds RNA structure in the 5′ untranslated region (UTR) of mRNAs. Here, we investigated the role of eIF4A in porcine sapovirus VPg-dependent translation. Using inhibitors and dominant-negative mutants, we found that eIF4A is required for viral translation and infectivity, suggesting that despite the presence of a very short 5′ UTR, eIF4A is required to unwind RNA structure in the sapovirus genome to facilitate virus translation.


Author(s):  
Xiaofeng Jia ◽  
Hong Zhou

: Eukaryotic translation initiation factor 4A (eIF4A) is a highly conserved DEAD-box RNA helicase in eukaryotes with ATPase and RNA helicase activities. eIF4A plays an important role in cap-dependent translation at the initiation of mRNA translation, and carcinoma signal transduction pathways are focused on cap-dependent translation. eIF4A is highly expressed in a variety of cancers, and its high expression is associated with the degree of leukemia progression. Therefore, eIF4A, as a target for tumor therapy, has become a hot research topic. Many small-molecule inhibitors targeting eIF4A have been demonstrated in preclinical cancer model trials. The purpose of this review is to describe the function of eIF4A and the development of eIF4A targeting inhibitors.


2014 ◽  
Vol 42 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Wei-Ting Lu ◽  
Anna Wilczynska ◽  
Ewan Smith ◽  
Martin Bushell

The eIF4A (eukaryotic initiation factor 4A) proteins belong to the extensive DEAD-box RNA helicase family, the members of which are involved in many aspects of RNA metabolism by virtue of their RNA-binding capacity and ATPase activity. Three eIF4A proteins have been characterized in vertebrates: eIF4A1 and eIF4A2 are cytoplasmic, whereas eIF4A3 is nuclear-localized. Although highly similar, they have been shown to possess rather diverse roles in the mRNA lifecycle. Their specific and diverse functions are often regulated and dictated by interacting partner proteins. The key differences between eIF4A family members are discussed in the present review.


2010 ◽  
Vol 400 (4) ◽  
pp. 768-782 ◽  
Author(s):  
Patrick Schütz ◽  
Elisabet Wahlberg ◽  
Tobias Karlberg ◽  
Martin Hammarström ◽  
Ruairi Collins ◽  
...  

2019 ◽  
Vol 30 (17) ◽  
pp. 2171-2184 ◽  
Author(s):  
Peyman P. Aryanpur ◽  
David M. Renner ◽  
Emily Rodela ◽  
Telsa M. Mittelmeier ◽  
Aaron Byrd ◽  
...  

Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5′ untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of DED1 are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among DED1 orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.


2020 ◽  
Vol 37 (5) ◽  
pp. 609-616 ◽  
Author(s):  
Leo Shen ◽  
Jerry Pelletier

This highlight reviews natural products targeting of the eIF4A RNA helicase by interfering with RNA-binding or acting as interfacial inhibitors to increase RNA resident time.


Sign in / Sign up

Export Citation Format

Share Document