scholarly journals Synergistic Activation of Interleukin-8 Gene Transcription by All-trans-retinoic Acid and Tumor Necrosis Factor-α Involves the Transcription Factor NF-κB

1996 ◽  
Vol 271 (43) ◽  
pp. 26954-26961 ◽  
Author(s):  
Hanna Harant ◽  
Rainer de Martin ◽  
Penelope J. Andrew ◽  
Elisabeth Foglar ◽  
Christian Dittrich ◽  
...  
1998 ◽  
Vol 187 (7) ◽  
pp. 1069-1079 ◽  
Author(s):  
Klaus Ruckdeschel ◽  
Suzanne Harb ◽  
Andreas Roggenkamp ◽  
Mathias Hornef ◽  
Robert Zumbihl ◽  
...  

In this study, we investigated the activity of transcription factor NF-κB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-κB signal, Y. enterocolitica inhibited NF-κB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IκB-α and IκB-β observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-κB and to suppress the tumor necrosis factor α (TNF-α) production as well as to trigger macrophage apoptosis. When NF-κB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-α secretion. Y. enterocolitica also impaired the activity of NF-κB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-α could induce HeLa cell apoptosis alone, TNF-α provoked apoptosis when activation of NF-κB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-κB, which inhibits TNF-α release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.


2011 ◽  
Vol 23 (1) ◽  
pp. 225
Author(s):  
G. K. Deb ◽  
S. R. Dey ◽  
J. I. Bang ◽  
S. J. Cho ◽  
T. H. Kwon ◽  
...  

Cumulus cells (CC) play a critical role in oocyte maturation and fertilization via gap junctions. The oocyte itself maintains CC health to favour oocyte maturation via the secretion of paracrine growth factors. However, the antiapoptotic effects of oocyte-secreted factors follow a gradient from the site of the oocytes. Moreover, degrees of CC apoptosis are inversely related to the in vitro embryo development. Therefore, inhibition of CC apoptosis is important for efficient in vitro embryo development. The beneficial effects of retinoic acid (RA) during in vitro embryo production are well known in different species. However, the effect of RA on CC apoptosis is yet to be elucidated. All-trans RA and 9-cis RA are the natural components of retinoids, and all-trans RA are metabolized to 9-cis RA for physiological function. Therefore, the objective of the present study was to evaluate the effect of 9-cis RA on the mechanism for inhibition of apoptosis in CC. Slaughterhouse cumulus–oocyte complexes (COC) were matured in vitro in TCM-199-based in vitro maturation medium containing 0 or 5 mM 9-cis RA for 23 to 24 h (15 COC/100 μL droplet) at 38.5°C and 5% CO2 in air with maximum humidity. Following in vitro maturation, COC of a droplet were fixed in 4% paraformaldehyde for TUNEL staining using In Situ Cell Death Detection Kit (Roche, Budapest, Hungary). The proportion of apoptotic cells was estimated using Olympus Soft Imaging Solutions GmBH (Olympus, Münster, Germany). The COC of the remaining droplet were denuded. The CC were frozen and stored at –80°C. The CC of 3 different cultures were pooled, and total RNA was extracted using RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Total RNA was reverse transcribed into cDNA using Omniscript Reverse Transcription kit (Qiagen). Relative expression of candidate genes was quantified using SYBER green real-time PCR with ΔΔ CT method. The expression was normalized against β-actin, glyceraldehyde 3-phosphate dehydrogenase, and 18s rRNA genes expression. The PCR efficiencies were calculated using relative calibration curves following 10-fold dilution series at 5 measuring points. Data were analysed for one-way ANOVA. The proportion of apoptotic cells was low in the 9-cis RA group (1.3 v. 3.3% of total CC; P < 0.05). Expression of tumor necrosis factor-α (11.1 v. 1.0; P < 0.001), caspase9 (2.0 v. 1.0; P < 0.01), and caspase3 (2.1 v. 1.0; P < 0.001) genes was down-regulated in the 9-cis RA group, whereas expression of Bcl2 gene was increased (1.0 v. 2.6 fold; P < 0.05). Moreover, the expression of c-fos gene of AP-1 pathway was down-regulated (1.9 v. 1 fold; P < 0.05) in the 9-cis RA group. Retinoic acid suppressed the expression of NF-kB, which in turn inhibits tumor necrosis factor-α-mediated caspase activity. However, the expression of NF-kB in CC was not affected by 9-cis RA (1.1 v. 1.0; P > 0.05). In conclusion, the present study indicated that 9-cis RA may inhibit cumulus cell apoptosis through suppression of AP-1 pathway. This work was partly supported by a scholarship from the BK21 program, the KRF (KRF-2008-211-F00011), the IPET (108068-03-1-SB010), and the KOSEF (10525010001-05N2501-00110).


2009 ◽  
Vol 122 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Tadaatsu Imaizumi ◽  
Tomoh Matsumiya ◽  
Hidemi Yoshida ◽  
Takuya Naraoka ◽  
Ryoko Uesato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document