scholarly journals Effect of Substitutions in the Thiamin Diphosphate-Magnesium Fold on the Activation of the Pyruvate Dehydrogenase Complex fromEscherichia coliby Cofactors and Substrate

1996 ◽  
Vol 271 (52) ◽  
pp. 33192-33200 ◽  
Author(s):  
Jizu Yi ◽  
Natalia Nemeria ◽  
Alan McNally ◽  
Frank Jordan ◽  
Rosane S. Machado ◽  
...  
2005 ◽  
Vol 386 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Xiaoqing Liu ◽  
Hans Bisswanger

Abstract Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.


2007 ◽  
Vol 282 (38) ◽  
pp. 28106-28116 ◽  
Author(s):  
Sachin Kale ◽  
Palaniappa Arjunan ◽  
William Furey ◽  
Frank Jordan

Our crystallographic studies have shown that two active center loops (an inner loop formed by residues 401-413 and outer loop formed by residues 541-557) of the E1 component of the Escherichia coli pyruvate dehydrogenase complex become organized only on binding a substrate analog that is capable of forming a stable thiamin diphosphate-bound covalent intermediate. We showed that residue His-407 on the inner loop has a key role in the mechanism, especially in the reductive acetylation of the E. coli dihydrolipoamide transacetylase component, whereas crystallographic results showed a role of this residue in a disorder-order transformation of these two loops, and the ordered conformation gives rise to numerous new contacts between the inner loop and the active center. We present mapping of the conserved residues on the inner loop. Kinetic, spectroscopic, and crystallographic studies on some inner loop variants led us to conclude that charged residues flanking His-407 are important for stabilization/ordering of the inner loop thereby facilitating completion of the active site. The results further suggest that a disorder to order transition of the dynamic inner loop is essential for substrate entry to the active site, for sequestering active site chemistry from undesirable side reactions, as well as for communication between the E1 and E2 components of the E. coli pyruvate dehydrogenase multienzyme complex.


2003 ◽  
Vol 3 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Peter Stacpoole ◽  
Renius Owen ◽  
Terence Flotte

Sign in / Sign up

Export Citation Format

Share Document