scholarly journals Scavenger Receptor Class B Type I as a Mediator of Cellular Cholesterol Efflux to Lipoproteins and Phospholipid Acceptors

1998 ◽  
Vol 273 (10) ◽  
pp. 5599-5606 ◽  
Author(s):  
Bo Jian ◽  
Margarita de la Llera-Moya ◽  
Yong Ji ◽  
Nan Wang ◽  
Michael C. Phillips ◽  
...  
2007 ◽  
Vol 402 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Gunther Marsche ◽  
Sǎsa Frank ◽  
John G. Raynes ◽  
Karen F. Kozarsky ◽  
Wolfgang Sattler ◽  
...  

During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890–35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.


2013 ◽  
Vol 15 (5) ◽  
Author(s):  
Christiane Danilo ◽  
Jorge L Gutierrez-Pajares ◽  
Maria Antonietta Mainieri ◽  
Isabelle Mercier ◽  
Michael P Lisanti ◽  
...  

Biochemistry ◽  
2002 ◽  
Vol 41 (39) ◽  
pp. 11931-11940 ◽  
Author(s):  
Philippe G. Frank ◽  
Yves L. Marcel ◽  
Margery A. Connelly ◽  
Douglas M. Lublin ◽  
Vivian Franklin ◽  
...  

2006 ◽  
Vol 291 (2) ◽  
pp. H677-H686 ◽  
Author(s):  
Philippe G. Frank ◽  
Michelle W.-C. Cheung ◽  
Stephanos Pavlides ◽  
Gemma Llaverias ◽  
David S. Park ◽  
...  

Caveolae are 50- to 100-nm cell surface plasma membrane invaginations present in terminally differentiated cells. They are characterized by the presence of caveolin-1, sphingolipids, and cholesterol. Caveolin-1 is thought to play an important role in the regulation of cellular cholesterol homeostasis, a process that needs to be properly controlled to limit and prevent cholesterol accumulation and eventually atherosclerosis. We have recently generated caveolin-1-deficient [Cav-1(−/−)] mice in which caveolae organelles are completely eliminated from all cell types, except cardiac and skeletal muscle. In the present study, we examined the metabolism of cholesterol in wild-type (WT) and Cav-1(−/−) mouse embryonic fibroblasts (MEFs) and mouse peritoneal macrophages (MPMs). We observed that Cav-1(−/−) MEFs are enriched in esterified cholesterol but depleted of free cholesterol compared with their wild-type counterparts. Similarly, Cav-1(−/−) MPMs also contained less free cholesterol and were enriched in esterified cholesterol on cholesterol loading. In agreement with this finding, caveolin-1 deficiency was associated with reduced free cholesterol synthesis but increased acyl-CoA:cholesterol acyl-transferase (ACAT) activity. In wild-type MPMs, we observed that caveolin-1 was markedly upregulated on cholesterol loading. Despite these differences, cellular cholesterol efflux from MEFs and MPMs to HDL was not affected in the Cav-1-deficient cells. Neither ATP-binding cassette transporter G1 (ABCG1)- nor scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux was affected. Cellular cholesterol efflux to apolipoprotein A-I was not significantly reduced in Cav-1(−/−) MPMs compared with wild-type MPMs. However, ABCA1-mediated cholesterol efflux was clearly more sensitive to the inhibitory effects of glyburide in Cav-1(−/−) MPMs versus WT MPMs. Taken together, these findings suggest that caveolin-1 plays an important role in the regulation of intracellular cholesterol homeostasis and can modulate the activity of other proteins that are involved in the regulation of intracellular cholesterol homeostasis.


2004 ◽  
Vol 377 (3) ◽  
pp. 741-747 ◽  
Author(s):  
Jane V. MULCAHY ◽  
Dave R. RIDDELL ◽  
James S. OWEN

Although studies in recombinant cells indicate that scavenger receptor class B, type I (SR-BI) can promote cholesterol efflux, investigations in transgenic mice overexpressing or deficient in SR-BI endorse its physiological function as selectively sequestering cholesteryl esters from high-density lipoproteins (HDLs). Less clear is the role of SR-BII, a splice variant of the SR-B gene that differs only in the C-terminal cytoplasmic domain. Here, we identify several putative signalling motifs in the C-terminus of human SR-BII, which are absent from SR-BI, and hypothesize that these motifs interact with signalling molecules to mobilize stored cholesteryl esters and/or promote the efflux of intracellular free cholesterol. ‘Pull-down’ assays using a panel of tagged SH3 (Src homology 3) domains showed that cytoplasmic SR-BII, but not cytoplasmic SR-BI, bound the SH3 domain of phospholipase C-γ1; this interaction was not, however, detected under more physiological conditions. Specific anti-peptide antisera identified SR-BII in human monocyte/macrophage THP-1 cells and, in recombinant cells, revealed receptor localization to caveolae, a plasma membrane microdomain that concentrates signal-transducer molecules and acts as a conduit for cholesterol flux between cells and lipoproteins. Consistent with its caveolar localization, expression of human SR-BII in recombinant Chinese hamster ovary cells (CHO–SR-BII) was associated with increased HDL-mediated cholesterol efflux. Nevertheless, when CHO-SR-BII cells were pre-loaded with cholesteryl [3H]oleate and incubated with HDL, cholesteryl ester stores were not reduced compared with control cells. We conclude that although human SR-BII is expressed by macrophages, contains cytoplasmic signalling motifs and localizes to caveolae, its ability to stimulate cholesterol efflux does not reflect enhanced hydrolysis of stored cholesteryl esters.


2000 ◽  
Vol 41 (11) ◽  
pp. 1849-1857 ◽  
Author(s):  
Frederick C. de Beer ◽  
Patrice M. Connell ◽  
J. Yu ◽  
Maria C. de Beer ◽  
Nancy R. Webb ◽  
...  

2010 ◽  
Vol 11 (2) ◽  
pp. 126
Author(s):  
K. Duwensee ◽  
I. Tancevski ◽  
E. Demetz ◽  
P. Eller ◽  
C. Heim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document