scholarly journals A Phosphatidylinositol 3-Kinase and Phosphatidylinositol Transfer Protein Act Synergistically in Formation of Constitutive Transport Vesicles from the Trans-Golgi Network

1998 ◽  
Vol 273 (17) ◽  
pp. 10349-10354 ◽  
Author(s):  
Steven M. Jones ◽  
James G. Alb ◽  
Scott E. Phillips ◽  
Vytas A. Bankaitis ◽  
Kathryn E. Howell
EMBO Reports ◽  
2001 ◽  
Vol 2 (4) ◽  
pp. 330-335 ◽  
Author(s):  
Akio Kihara ◽  
Yukiko Kabeya ◽  
Yoshinori Ohsumi ◽  
Tamotsu Yoshimori

1997 ◽  
Vol 8 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Y Nakajima ◽  
S R Pfeffer

Mannose 6-phosphate receptors carry newly synthesized lysosomal hydrolases from the trans-Golgi network to endosomes, then return to the trans-Golgi network for another round of enzyme delivery. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, interferes with the delivery of newly synthesized lysosomal enzymes to lysosomes. We used two independent assays of mannose 6-phosphate receptor trafficking to determine the precise step that is blocked by wortmannin. Using an assay that monitors resialylation of desialylated cell surface 300-kDa mannose 6-phosphate receptors, we found that receptor endocytosis and transport to the trans-Golgi network were not inhibited by 2 microM wortmannin. In addition, this concentration of drug had no effect on the transport of the mannose 6-phosphate receptor from late endosomes to the trans-Golgi network using a system that reconstitutes this transport process in cell extracts. Under the same conditions, wortmannin significantly inhibited the generation of mature cathepsin D. In addition, the structurally unrelated phosphatidylinositol 3-kinase inhibitor, LY294002, was also without effect when added to in vitro endosome-trans-Golgi network transport reactions. These experiments demonstrate that the interruption in lysosomal enzyme targeting is most likely due to a wortmannin-sensitive process required for the export of these receptors from the trans-Golgi network, consistent with the established role of phosphatidylinositol 3-kinase in the equivalent transport process in Saccharomyces cerevisiae.


Cell ◽  
1993 ◽  
Vol 74 (5) ◽  
pp. 919-928 ◽  
Author(s):  
Geraint M.H. Thomas ◽  
Emer Cunningham ◽  
Amanda Fensome ◽  
Andrew Ball ◽  
Nicholas F. Totty ◽  
...  

1991 ◽  
Vol 112 (5) ◽  
pp. 823-831 ◽  
Author(s):  
Y Goda ◽  
S R Pfeffer

We have recently described a cell-free system that reconstitutes the vesicular transport of 300-kD mannose 6-phosphate receptors from late endosomes to the trans-Golgi network (TGN). We report here that the endosome----TGN transport reaction was significantly inhibited by low concentrations of the alkylating agent, N-ethylmaleimide (NEM). Addition of fresh cytosol to NEM-inactivated reaction mixtures restored transport to at least 80% of control levels. Restorative activity was only present in cytosol fractions, and was sensitive to trypsin treatment or incubation at 100 degrees C. A variety of criteria demonstrated that the restorative activity was distinct from NSF, an NEM-sensitive protein that facilitates the transport of proteins from the ER to the Golgi complex and between Golgi cisternae. Cytosol fractions immunodepleted of greater than or equal to 90% of NSF protein, or heated to 37 degrees C to inactivate greater than or equal to 93% of NSF activity, were fully able to restore transport to NEM-treated reaction mixtures. The majority of restorative activity sedimented as a uniform species of 50-100 kD upon glycerol gradient centrifugation. We have termed this activity ETF-1, for endosome----TGN transport factor-1. Kinetic experiments showed that ETF-1 acts at a very early stage in vesicular transport, which may reflect a role for this factor in the formation of nascent transport vesicles. GTP hydrolysis appears to be required throughout the transport reaction. The ability of GTP gamma S to inhibit endosome----TGN transport required the presence of donor, endosome membranes, and cytosol, which may reflect a role for guanine nucleotides in vesicle budding. Finally, ETF-1 appears to act before a step that is blocked by GTP gamma S, during the process by which proteins are transported from endosomes to the TGN in vitro.


2006 ◽  
Vol 26 (7-8) ◽  
pp. 1151-1164 ◽  
Author(s):  
Małgorzata Chalimoniuk ◽  
Gerry T. Snoek ◽  
Agata Adamczyk ◽  
Andrzej Małecki ◽  
Joanna B. Strosznajder

Sign in / Sign up

Export Citation Format

Share Document