phosphatidylinositol transfer protein
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 15)

H-INDEX

37
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Zhigang Xie ◽  
Vytas A. Bankaitis

The mammalian neocortex undergoes explosive expansion during embryonic development. From an evolutionary perspective, higher complexity of the neocortex is accompanied by a prominent expansion in its lateral dimension so that the neocortical surface area is increased. Expansion in the radial dimension throughout evolution is limited so that neocortical thickness is strongly restricted1–3. The underlying mechanisms for restricting neocortical thickness remain unclear. Expansion of the developing mouse neocortex is driven by neurogenesis which is itself primarily fueled by neural stem cells (NSCs). NSCs form a pseudostratified epithelium and exhibit a hallmark cell cycle-dependent nuclear movement termed interkinetic nuclear migration (IKNM) 2–4. While IKNM plays a critical role in cell fate determination, it remains a poorly understood process. Herein, we demonstrate IKNM relies on a phosphatidylinositol transfer protein (PITP)-noncanonical planar cell polarity (ncPCP) signaling axis that restricts radial expansion of the developing neocortex. Ablation of PITPα/PITPβ in NSCs compromised IKNM -- resulting in a thickened neocortex and perturbed curvature of its ventricular surface. Those phenotypic derangements in IKNM and neocortical morphogenesis were recapitulated in mouse embryos individually ablated for two ncPCP receptor gene activities and in a mosaic neocortex expressing a dominant-negative variant of a third ncPCP receptor. Finally, PITP signaling links to ncPCP pathway activity by promoting membrane trafficking of a subset of ncPCP receptors from the trans-Golgi network to the NSC cell surface. We conclude IKNM is a driving force for a special form of convergent extension regulated by coupling PITP-mediated phosphoinositide signaling with activity of the evolutionarily conserved ncPCP pathway.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Danish Khan ◽  
Dongju Lee ◽  
Gulcin Gulten ◽  
Anup Aggarwal ◽  
Joshua Wofford ◽  
...  

Yeast Sfh5 is an unusual member of the Sec14-like phosphatidylinositol transfer protein (PITP) family. Whereas PITPs are defined by their abilities to transfer phosphatidylinositol between membranes in vitro, and to stimulate phosphoinositide signaling in vivo, Sfh5 does not exhibit these activities. Rather, Sfh5 is a redox-active penta-coordinate high spin FeIII hemoprotein with an unusual heme-binding arrangement that involves a co-axial tyrosine/histidine coordination strategy and a complex electronic structure connecting the open shell iron d-orbitals with three aromatic ring systems. That Sfh5 is not a PITP is supported by demonstrations that heme is not a readily exchangeable ligand, and that phosphatidylinositol-exchange activity is resuscitated in heme binding-deficient Sfh5 mutants. The collective data identify Sfh5 as the prototype of a new class of fungal hemoproteins, and emphasize the versatility of the Sec14-fold as scaffold for translating the binding of chemically distinct ligands to the control of diverse sets of cellular activities.


2020 ◽  
Author(s):  
Danish Khan ◽  
Dongju Lee ◽  
Gulcin Gulten ◽  
Anup Aggarwal ◽  
Joshua Wofford ◽  
...  

AbstractYeast Sfh5 is an unusual member of the Sec14-like phosphatidylinositol transfer protein (PITP) family. Whereas PITPs are defined by their abilities to transfer phosphatidylinositol between membranes in vitro, and to stimulate phosphoinositide signaling in vivo, Sfh5 does not exhibit these activities. Rather, Sfh5 is a redox-active penta-coordinate high spin FeIII heme-binding protein with an unusual heme-binding arrangement that involves a co-axial tyrosine/histidine coordination strategy and a complex electronic structure connecting the open shell iron d-orbitals with three aromatic ring systems. That Sfh5 is not a PITP is supported by demonstrations that heme is not a readily exchangeable ligand, and that phosphatidylinositol-exchange activity is resuscitated in heme binding-deficient Sfh5 mutants. The collective data identify Sfh5 as the prototype of a new class of fungal hemoproteins, and emphasize the versatility of the Sec14-fold as scaffold for translating the binding of chemically distinct ligands to the control of diverse sets of cellular activities.


Sign in / Sign up

Export Citation Format

Share Document