lipid signaling
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 57)

H-INDEX

46
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Righetti ◽  
Chiara Dall’Asta ◽  
Luigi Lucini ◽  
Paola Battilani

Fumonisin-contaminated maize (Zea mays L.) products are a major health concern because of their toxic effects in humans and animals. Breeding maize for increased mycotoxin resistance is one of the key sustainable strategies for mitigating the effects of fumonisin contamination. Recent studies suggest a link between fumonisin accumulation and plant lipid and oxylipin profiles. However, the data collected so far do not reveal a cause-and-effect relationship. In this study, to decipher the multifactorial nature of mycotoxin resistance and plant–pathogen interaction mechanisms, we examined the oxylipin and complex lipid profiles of two maize hybrids (H21 and H22, the latter showing significantly lower FBs content) grown in the open field in two locations over 3years. Untargeted ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight (UHPLC-Q-TOF), together with chemometrics analysis, successfully distinguished between the two hybrids as having low- and high-level fumonisin contamination. Considering that H21 and H22 were exposed to the same environmental factors, the higher activation of lipid signaling systems in H22 suggests that other routes are enabled in the less susceptible hybrids to limit fumonisin B (FB) accumulation. Our results highlighted the crucial role played by oxylipin and sphingolipid signaling in modulating the complex maize response to F. verticillioides infection. Overall, our results returned a global view on the changes in lipid metabolites related to fumonisin accumulation under open field conditions, and revealed a strong activation of the lipid signaling cascade in maize in the presence of FB1.


2021 ◽  
Author(s):  
Clare Therese Johnson ◽  
Gabriel H Dias de Abreu ◽  
Ken Mackie ◽  
Hui-Chen Lu ◽  
Heather B Bradshaw

Maternal cannabis use during lactation may expose developing infants to cannabinoids (CBs) such as tetrahydrocannabinol (THC) and cannabidiol (CBD). CBs modulate lipid signaling molecules in the central nervous system in age- and cell-dependent ways, but their influence on the lipid composition of breastmilk has yet to be established. This study investigates the effects of THC, CBD, or their combination on milk lipids by analyzing the stomach contents of CD1 mouse pups that have been nursed by dams injected with CBs on postnatal days (PND) 1 -10 collected 2 hours after the last injection on PND10. HPLC/MS/MS was used to identify and quantify over 80 endogenous lipid species and cannabinoids in pup stomach contents. We show that CBs differentially accumulate in milk, lead to widespread decreases in free fatty acids, decreases in N-acyl methionine species, increases N-linoleoyl species, as well as modulate levels of endogenous CBs (eCBs) AEA, 2-AG, and their structural congeners. Our data indicate the passage of CBs to pups through breast milk and that maternal CB exposure alters breast milk lipid compositions.


2021 ◽  
Author(s):  
Gennie L. Parkman ◽  
Mona Foth ◽  
David A. Kircher ◽  
Sheri L. Holmen ◽  
Martin McMahon
Keyword(s):  

2021 ◽  
Vol 17 (10) ◽  
pp. e1010027
Author(s):  
Sophia C. Parks ◽  
Susan Nguyen ◽  
Shyon Nasrolahi ◽  
Chaitra Bhat ◽  
Damian Juncaj ◽  
...  

Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.


2021 ◽  
Author(s):  
Antonino Asaro ◽  
Rishabhdev Sinha ◽  
Magda Bakun ◽  
Oleksandra Kalnytska ◽  
Anne-Sophie Carlo-Spiewok ◽  
...  

Sortilin is a neuronal receptor for apolipoprotein E. Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with apoE3 but is lost with apoE4, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein (FABP) 7, the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.


2021 ◽  
Vol 118 (36) ◽  
pp. e2101410118
Author(s):  
Jason F. Cooper ◽  
Ryan J. Guasp ◽  
Meghan Lee Arnold ◽  
Barth D. Grant ◽  
Monica Driscoll

In human neurodegenerative diseases, neurons can transfer toxic protein aggregates to surrounding cells, promoting pathology via poorly understood mechanisms. In Caenorhabditis elegans, proteostressed neurons can expel neurotoxic proteins in large, membrane-bound vesicles called exophers. We investigated how specific stresses impact neuronal trash expulsion to show that neuronal exopher production can be markedly elevated by oxidative and osmotic stress. Unexpectedly, we also found that fasting dramatically increases exophergenesis. Mechanistic dissection focused on identifying nonautonomous factors that sense and activate the fasting-induced exopher response revealed that DAF16/FOXO-dependent and -independent processes are engaged. Fasting-induced exopher elevation requires the intestinal peptide transporter PEPT-1, lipid synthesis transcription factors Mediator complex MDT-15 and SBP-1/SREPB1, and fatty acid synthase FASN-1, implicating remotely initiated lipid signaling in neuronal trash elimination. A conserved fibroblast growth factor (FGF)/RAS/MAPK signaling pathway that acts downstream of, or in parallel to, lipid signaling also promotes fasting-induced neuronal exopher elevation. A germline-based epidermal growth factor (EGF) signal that acts through neurons is also required for exopher production. Our data define a nonautonomous network that links food availability changes to remote, and extreme, neuronal homeostasis responses relevant to aggregate transfer biology.


2021 ◽  
Vol 14 ◽  
Author(s):  
Katherine Castor ◽  
Jessica Dawlaty ◽  
Xianghong Arakaki ◽  
Noah Gross ◽  
Yohannes W. Woldeamanuel ◽  
...  

BackgroundLipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology.MethodsWe obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates.ResultsUnesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF.ConclusionsPlasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.


Sign in / Sign up

Export Citation Format

Share Document