scholarly journals Platelet-derived Growth Factor Inhibits Insulin Stimulation of Insulin Receptor Substrate-1-associated Phosphatidylinositol 3-Kinase in 3T3-L1 Adipocytes without Affecting Glucose Transport

1998 ◽  
Vol 273 (39) ◽  
pp. 25139-25147 ◽  
Author(s):  
Patricia A. Staubs ◽  
James G. Nelson ◽  
Donna R. Reichart ◽  
Jerrold M. Olefsky
2000 ◽  
Vol 20 (5) ◽  
pp. 1489-1496 ◽  
Author(s):  
Adrian V. Lee ◽  
Jennifer L. Gooch ◽  
Steffi Oesterreich ◽  
Rebecca L. Guler ◽  
Douglas Yee

ABSTRACT Insulin receptor substrate 1 (IRS-1) is a critical adapter protein involved in both insulin and insulin-like growth factor (IGF) signaling. Due to the fact that alteration of IRS-1 levels can affect the sensitivity and response to both insulin and IGF-I, we examined the ability of each of these ligands to affect IRS-1 expression. IGF-I (10 nM) stimulation of MCF-7 breast cancer cells caused a transient tyrosine phosphorylation of IRS-1 that was maximal at 15 min and decreased thereafter. The decrease in tyrosine phosphorylation of IRS-1 was paralleled by an apparent decrease in IRS-1 levels. The IGF-mediated decrease in IRS-1 expression was posttranscriptional and due to a decrease in the half-life of the IRS-1 protein. Insulin (10 nM) caused tyrosine phosphorylation of IRS-1 but not degradation, whereas high concentrations of insulin (10 μM) resulted in degradation of IRS-1. IGF-I (10 nM) stimulation resulted in transient IRS-1 phosphorylation and extracellular signal-related kinase (ERK) activation. In contrast, insulin (10 nM) caused sustained IRS-1 phosphorylation and ERK activation. Inhibition of 26S proteasome activity by the use of lactacystin or MG132 completely blocked IGF-mediated degradation of IRS-1. Furthermore, coimmunoprecipitation experiments showed an association between ubiquitin and IRS-1 that was increased by treatment of cells with IGF-I. Finally, IGF-mediated degradation of IRS-1 was blocked by inhibition of phosphatidylinositol 3′-kinase activity but was not affected by inhibition of ERK, suggesting that this may represent a direct negative-feedback mechanism resulting from downstream IRS-1 signaling. We conclude that IGF-I can cause ligand-mediated degradation of IRS-1 via the ubiquitin-mediated 26S proteasome and a phosphatidylinositol 3′-kinase-dependent mechanism and that control of degradation may have profound effects on downstream activation of signaling pathways.


1995 ◽  
Vol 15 (9) ◽  
pp. 4711-4717 ◽  
Author(s):  
D Chen ◽  
D J Van Horn ◽  
M F White ◽  
J M Backer

Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.


2000 ◽  
Vol 381 (11) ◽  
pp. 1139-1141 ◽  
Author(s):  
A. Gypakis ◽  
H.K. Wasner

Abstract It has been suggested that downstream signaling from the insulin receptor to the level of the protein kinases and protein phosphatases is accomplished by prostaglandylinositol cyclic phosphate (cyclic PIP), a proposed second messenger of insulin. However, evidence points also to both phosphatidylinositol 3-kinase, which binds to the tyrosine phosphorylated insulin receptor substrate-1, and the Ras complex in insulin's downstream signaling. We have examined whether a correlation exists between these various observations. It was found that wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, prevented insulin-induced, as well as cyclic PIP-induced activation of glucose transport, indicating that PI 3-kinase action on glucose transport involves downstream signaling of both insulin and cyclic PIP. Wortmannin has no effect on cyclic PIP synthase activity nor on the substrate production for cyclic PIP synthesis either, indicating that the functional role of PI 3-kinase is exclusively downstream of cyclic PIP.


Sign in / Sign up

Export Citation Format

Share Document