scholarly journals Paxillin Associates with Poly(A)-binding Protein 1 at the Dense Endoplasmic Reticulum and the Leading Edge of Migrating Cells

2001 ◽  
Vol 277 (8) ◽  
pp. 6428-6437 ◽  
Author(s):  
Alison J. Woods ◽  
Marnie S. Roberts ◽  
Jyoti Choudhary ◽  
Simon T. Barry ◽  
Yuichi Mazaki ◽  
...  
2016 ◽  
Vol 27 (10) ◽  
pp. 1596-1605 ◽  
Author(s):  
Hiroshi Senoo ◽  
Huaqing Cai ◽  
Yu Wang ◽  
Hiromi Sesaki ◽  
Miho Iijima

Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.


2013 ◽  
Vol 451 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hayley Dingsdale ◽  
Emmanuel Okeke ◽  
Muhammad Awais ◽  
Lee Haynes ◽  
David N. Criddle ◽  
...  

We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER–PM junctions formed near the leading edge of migrating cells (usually within 0.5 μm of polymerized actin and close to focal adhesions) and appeared suddenly without sliding from the interior of the cell. The long distance sliding and dissolution of ER–PM junctions accompanied the tail withdrawal.


2004 ◽  
Vol 15 (2) ◽  
pp. 481-496 ◽  
Author(s):  
Josefa Andrade ◽  
Hu Zhao ◽  
Brian Titus ◽  
Sandra Timm Pearce ◽  
Margarida Barroso

We have reported that p22, an N-myristoylated EF-hand Ca2+-binding protein, associates with microtubules and plays a role in membrane trafficking. Here, we show that p22 also associates with membranes of the early secretory pathway membranes, in particular endoplasmic reticulum (ER). On binding of Ca2+, p22's ability to associate with membranes increases in an N-myristoylation-dependent manner, which is suggestive of a nonclassical Ca2+-myristoyl switch mechanism. To address the intracellular functions of p22, a digitonin-based “bulk microinjection” assay was developed to load cells with anti-p22, wild-type, or mutant p22 proteins. Antibodies against a p22 peptide induce microtubule depolymerization and ER fragmentation; this antibody-mediated effect is overcome by preincubation with the respective p22 peptide. In contrast, N-myristoylated p22 induces the formation of microtubule bundles, the accumulation of ER structures along the bundles as well as an increase in ER network formation. An N-myristoylated Ca2+-binding p22 mutant, which is unable to undergo Ca2+-mediated conformational changes, induces microtubule bundling and accumulation of ER structures along the bundles but does not increase ER network formation. Together, these data strongly suggest that p22 modulates the organization and dynamics of microtubule cytoskeleton in a Ca2+-independent manner and affects ER network assembly in a Ca2+-dependent manner.


1999 ◽  
Vol 145 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Ping Lin ◽  
Yong Yao ◽  
Robert Hofmeister ◽  
Roger Y. Tsien ◽  
Marilyn Gist Farquhar

We previously demonstrated that CALNUC, a Ca2+-binding protein with two EF-hands, is the major Ca2+-binding protein in the Golgi by 45Ca2+ overlay (Lin, P., H. Le-Niculescu, R. Hofmeister, J.M. McCaffery, M. Jin, H. Henneman, T. McQuistan, L. De Vries, and M. Farquhar. 1998. J. Cell Biol. 141:1515–1527). In this study we investigated CALNUC's properties and the Golgi Ca2+ storage pool in vivo. CALNUC was found to be a highly abundant Golgi protein (3.8 μg CALNUC/mg Golgi protein, 2.5 × 105 CALNUC molecules/NRK cell) and to have a single high affinity, low capacity Ca2+-binding site (Kd = 6.6 μM, binding capacity = 1.1 μmol Ca2+/μmol CALNUC). 45Ca2+ storage was increased by 2.5- and 3-fold, respectively, in HeLa cells transiently overexpressing CALNUC-GFP and in EcR-CHO cells stably overexpressing CALNUC. Deletion of the first EF-hand α helix from CALNUC completely abolished its Ca2+-binding capability. CALNUC was correctly targeted to the Golgi in transfected cells as it colocalized and cosedimented with the Golgi marker, α-mannosidase II (Man II). Approximately 70% of the 45Ca2+ taken up by HeLa and CHO cells overexpressing CALNUC was released by treatment with thapsigargin, a sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) (Ca2+ pump) blocker. Stimulation of transfected cells with the agonist ATP or IP3 alone (permeabilized cells) also resulted in a significant increase in Ca2+ release from Golgi stores. By immunofluorescence, the IP3 receptor type 1 (IP3R-1) was distributed over the endoplasmic reticulum and codistributed with CALNUC in the Golgi. These results provide direct evidence that CALNUC binds Ca2+ in vivo and together with SERCA and IP3R is involved in establishment of the agonist-mobilizable Golgi Ca2+ store.


Sign in / Sign up

Export Citation Format

Share Document