scholarly journals Oligomeric Amyloid-β Inhibits the Proteolytic Conversion of Brain-derived Neurotrophic Factor (BDNF), AMPA Receptor Trafficking, and Classical Conditioning

2010 ◽  
Vol 285 (45) ◽  
pp. 34708-34717 ◽  
Author(s):  
Zhaoqing Zheng ◽  
Boris Sabirzhanov ◽  
Joyce Keifer
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Sumasri Guntupalli ◽  
Jocelyn Widagdo ◽  
Victor Anggono

Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer’s disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβlevels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.


2010 ◽  
Vol 13 (5) ◽  
pp. 630-634 ◽  
Author(s):  
Paola Virginia Migues ◽  
Oliver Hardt ◽  
Dong Chuan Wu ◽  
Karine Gamache ◽  
Todd Charlton Sacktor ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Lichtman ◽  
Eyal Bergmann ◽  
Alexandra Kavushansky ◽  
Nadav Cohen ◽  
Nina S. Levy ◽  
...  

AbstractIQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure–function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.


2010 ◽  
Vol 11 (10) ◽  
pp. 675-681 ◽  
Author(s):  
Harmen J. Krugers ◽  
Casper C. Hoogenraad ◽  
Laurent Groc

Sign in / Sign up

Export Citation Format

Share Document