rab family
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 4)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mureed Abbas ◽  
Yun‐He Fan ◽  
Xue‐Kai Shi ◽  
Lu Gao ◽  
Yan‐Li Wang ◽  
...  


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Simone Intriago ◽  
Selena Sanchez ◽  
Michael Hamann
Keyword(s):  


Author(s):  
Mary W. McCaffrey ◽  
Andrew J. Lindsay ◽  
Vivian Kitainda
Keyword(s):  


FEBS Journal ◽  
2020 ◽  
Vol 288 (1) ◽  
pp. 36-55 ◽  
Author(s):  
Yuta Homma ◽  
Shu Hiragi ◽  
Mitsunori Fukuda
Keyword(s):  


2020 ◽  
Author(s):  
Sanae Ueda ◽  
Naoki Tamura ◽  
Joji Mima

AbstractMembrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5-to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers.



2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Shitong Lin ◽  
Canhui Cao ◽  
Yifan Meng ◽  
Ping Wu ◽  
Peipei Gao ◽  
...  

Abstract Purpose: Several RAB family genes have been studied extensively and proven to play pivotal roles in the occurrence and development of certain cancers. Here, we explored commonly expressed RAB family genes in humans and their prognostic significance using bioinformatics, and then identified potential biomarkers of breast invasive carcinoma (BRCA). Materials and methods: The prognostic values (overall survival) of RAB family genes in BRCA were obtained using Gene Expression Profiling Interactive Analysis (GEPIA). The expression patterns of RAB family genes and their relationships with clinicopathological parameters in BRCA were measured using the ONCOMINE and UALCAN databases, respectively. Genetic mutations and survival analysis were investigated using the cBio Cancer Genomics Portal (c-BioPortal). Interacting genes of potential biomarkers were identified using STRING, and functional enrichment analyses were performed using FunRich v3.1.3. Results: In total, 64 RAB genes were identified and analyzed in our study. Results showed that RAB1B, RAB2A, and RAB18 were up-regulated and significantly associated with poor overall survival in BRCA. Furthermore, their higher expression was positively correlated with clinicopathological parameters (e.g. cancer stage and nodal metastasis status). DNA copy number amplifications and mRNA up-regulation were the main genetic mutations, and the altered group showed significantly poorer overall survival compared with the unaltered group. Functional enrichment analysis of RAB1B, RAB2A, and RAB18 indicated they were closely involved in GTPase activity. Conclusions:RAB1B, RAB2A, and RAB18 were up-regulated and significantly correlated with poor prognosis in BRCA. Thus, they could be applied as novel biomarkers of BRCA in future studies.



2019 ◽  
Vol 116 (47) ◽  
pp. 23573-23581
Author(s):  
Youngsoo Jun ◽  
William Wickner

Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.



Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 39-49
Author(s):  
Muhammad Rashid ◽  
Junlong Liu ◽  
Guiquan Guan ◽  
Jinming Wang ◽  
Zhi Li ◽  
...  

AbstractThe present study was performed on antigen-presenting cells (APCs) of Theileria annulata transformed dendritic cells (TaDCs) and monocyte-derived dendritic cells (MoDCs) to compare differences in antigen presentation and stimulation of T lymphocyte proliferation. Antigen presentation for T lymphocyte proliferation was analysed by flow cytometry. Additionally, the level of mRNA transcription of small GTPases of the Rab family expressed in the TaDC cell line was analysed by quantitative real-time polymerase chain reaction (Q-RT-PCR). The endocytosis rate of TaDCs was significantly (P < 0.01) lower than in MoDCs. In contrast, when T lymphocytes were co-cultured with TaDC-APCs T cell proliferation was similar, while co-culture with MoDC-APC stimulated proliferation of CD4+ cells to a greater degree than CD8+ cells. However, the efficacy of TaDC-APCs to stimulate T lymphocytes dropped as the number of passages of TaDC-APC increased. Likewise, the transcription level of Rab family genes also significantly (P > 0.001) declined with progressive passages (>50) of the TaDC cell line. We conclude that initially the TaDC cell line efficiently presents antigen to stimulate T lymphocyte proliferation to produce a cellular immune response against the presented antigen.



Sign in / Sign up

Export Citation Format

Share Document