scholarly journals Recognition of Unmodified Histone H3 by the First PHD Finger of Bromodomain-PHD Finger Protein 2 Provides Insights into the Regulation of Histone Acetyltransferases Monocytic Leukemic Zinc-finger Protein (MOZ) and MOZ-related factor (MORF)

2011 ◽  
Vol 286 (42) ◽  
pp. 36944-36955 ◽  
Author(s):  
Su Qin ◽  
Lei Jin ◽  
Jiahai Zhang ◽  
Lei Liu ◽  
Peng Ji ◽  
...  
2006 ◽  
Vol 26 (22) ◽  
pp. 8623-8638 ◽  
Author(s):  
Smitha P. Sripathy ◽  
Jessica Stevens ◽  
David C. Schultz

ABSTRACT KAP1/TIF1β is proposed to be a universal corepressor protein for the KRAB zinc finger protein (KRAB-zfp) superfamily of transcriptional repressors. To characterize the role of KAP1 and KAP1-interacting proteins in transcriptional repression, we investigated the regulation of stably integrated reporter transgenes by hormone-responsive KRAB and KAP1 repressor proteins. Here, we demonstrate that depletion of endogenous KAP1 levels by small interfering RNA (siRNA) significantly inhibited KRAB-mediated transcriptional repression of a chromatin template. Similarly, reduction in cellular levels of HP1α/β/γ and SETDB1 by siRNA attenuated KRAB-KAP1 repression. We also found that direct tethering of KAP1 to DNA was sufficient to repress transcription of an integrated transgene. This activity is absolutely dependent upon the interaction of KAP1 with HP1 and on an intact PHD finger and bromodomain of KAP1, suggesting that these domains function cooperatively in transcriptional corepression. The achievement of the repressed state by wild-type KAP1 involves decreased recruitment of RNA polymerase II, reduced levels of histone H3 K9 acetylation and H3K4 methylation, an increase in histone occupancy, enrichment of trimethyl histone H3K9, H3K36, and histone H4K20, and HP1 deposition at proximal regulatory sequences of the transgene. A KAP1 protein containing a mutation of the HP1 binding domain failed to induce any change in the histone modifications associated with DNA sequences of the transgene, implying that HP1-directed nuclear compartmentalization is required for transcriptional repression by the KRAB/KAP1 repression complex. The combination of these data suggests that KAP1 functions to coordinate activities that dynamically regulate changes in histone modifications and deposition of HP1 to establish a de novo microenvironment of heterochromatin, which is required for repression of gene transcription by KRAB-zfps.


2008 ◽  
Vol 28 (22) ◽  
pp. 6828-6843 ◽  
Author(s):  
Mukta Ullah ◽  
Nadine Pelletier ◽  
Lin Xiao ◽  
Song Ping Zhao ◽  
Kainan Wang ◽  
...  

ABSTRACT The monocytic leukemia zinc finger protein MOZ and the related factor MORF form tetrameric complexes with ING5 (inhibitor of growth 5), EAF6 (Esa1-associated factor 6 ortholog), and the bromodomain-PHD finger protein BRPF1, -2, or -3. To gain new insights into the structure, function, and regulation of these complexes, we reconstituted them and performed various molecular analyses. We found that BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6. An N-terminal region of BRPF1 interacts with the acetyltransferases; the enhancer of polycomb (EPc) homology domain in the middle part binds to ING5 and EAF6. The association of BRPF1 with EAF6 is weak, but ING5 increases the affinity. These three proteins form a trimeric core that is conserved from Drosophila melanogaster to humans, although authentic orthologs of MOZ and MORF are absent in invertebrates. Deletion mapping studies revealed that the acetyltransferase domain of MOZ/MORF is sufficient for BRPF1 interaction. At the functional level, complex formation with BRPF1 and ING5 drastically stimulates the activity of the acetyltransferase domain in acetylation of nucleosomal histone H3 and free histones H3 and H4. An unstructured 18-residue region at the C-terminal end of the catalytic domain is required for BRPF1 interaction and may function as an “activation lid.” Furthermore, BRPF1 enhances the transcriptional potential of MOZ and a leukemic MOZ-TIF2 fusion protein. These findings thus indicate that BRPF proteins play a key role in assembling and activating MOZ/MORF acetyltransferase complexes.


Sign in / Sign up

Export Citation Format

Share Document