mouse mast cell
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 18)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Gao ◽  
Lina Hai ◽  
Yuan Kang ◽  
Wenjie Qin ◽  
Fang Liu ◽  
...  

Compound Kushen Injection (CKI) is a bis-herbal formulation extracted from Kushen (Radix Sophorae Flavescentis) and Baituling (Rhizoma Heterosmilacis Yunnanensis). Clinically, it is used as the adjuvant treatment of cancer. However, with the increased application, the cases of immediate hypersensitivity reactions (IHRs) also gradually rise. In this study, we investigated the underlying mechanism(s) and active constituent(s) for CKI-induced IHRs in experimental models. The obtained results showed that CKI did not elevate serum total IgE (tIgE) and mouse mast cell protease 1 (MMCP1) after consecutive immunization for 5 weeks, but could induce Evans blue extravasation (local) and cause obvious hypothermia (systemic) after a single injection. Further study showed that alkaloids in Kushen, especially matrine, were responsible for CKI-induced IHRs. Mechanism study showed that various platelet-activating factor (PAF) receptor antagonists could significantly counter CKI-induced IHRs locally or systemically. In cell system, CKI was able to promote PAF production in a non-cell-selective manner. In cell lysate, the effect of CKI on PAF production became stronger and could be abolished by blocking de novo pathway. In conclusion, our study identifies, for the first time, that CKI is a PAF inducer. It causes non-immunologic IHRs, rather than IgE-dependent IHRs, by promoting PAF production through de novo pathway. Alkaloids in Kushen, especially matrine, are the prime culprits for IHRs. Our findings may provide a potential approach for preventing and treating CKI-induced IHRs.


Author(s):  
Erika Méndez-Enríquez ◽  
Maya Salomonsson ◽  
Jens Eriksson ◽  
Christer Janson ◽  
Andrei Malinovschi ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6311
Author(s):  
Sofie Svanberg ◽  
Zhiqiang Li ◽  
Pontus Öhlund ◽  
Ananya Roy ◽  
Magnus Åbrink

Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 925 ◽  
Author(s):  
Zhiqiang Li ◽  
Dimitra Peirasmaki ◽  
Staffan Svärd ◽  
Magnus Åbrink

Mast cells have been shown to affect the control of infections with the protozoan parasite Giardia intestinalis. Recently, we demonstrated that Giardia excretory-secretory proteins inhibited the activity of the connective tissue mast cell-specific protease chymase. To study the potential role of the chymase mouse mast cell protease (mMCP)-4 during infections with Giardia, mMCP-4+/+ and mMCP-4−/− littermate mice were gavage-infected with G. intestinalis trophozoites of the human assemblage B isolate GS. No significant changes in weight gain was observed in infected young (≈10 weeks old) mMCP-4−/− and mMCP-4+/+ littermate mice. In contrast, infections of mature adult mice (>18 weeks old) caused significant weight loss as compared to uninfected control mice. We detected a more rapid weight loss in mMCP-4−/− mice as compared to littermate mMCP-4+/+ mice. Submucosal mast cell and granulocyte counts in jejunum increased in the infected adult mMCP-4−/− and mMCP-4+/+ mice. This increase was correlated with an augmented intestinal trypsin-like and chymotrypsin-like activity, but the myeloperoxidase activity was constant. Infected mice showed a significantly lower intestinal neutrophil elastase (NE) activity, and in vitro, soluble Giardia proteins inhibited human recombinant NE. Serum levels of IL-6 were significantly increased eight and 13 days post infection (dpi), while intestinal IL-6 levels showed a trend to significant increase 8 dpi. Strikingly, the lack of mMCP-4 resulted in significantly less intestinal transcriptional upregulation of IL-6, TNF-α, IL-25, CXCL2, IL-2, IL-4, IL-5, and IL-10 in the Giardia-infected mature adult mice, suggesting that chymase may play a regulatory role in intestinal cytokine responses.


2020 ◽  
Vol 33 (4) ◽  
pp. 579-590
Author(s):  
Mirjana Grujic ◽  
Lars Hellman ◽  
Ann‐Marie Gustafson ◽  
Srinivas Akula ◽  
Fabio Rabelo Melo ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 5935 ◽  
Author(s):  
Ewelina Russjan ◽  
Kryspin Andrzejewski ◽  
Dorota Sulejczak ◽  
Patrycja Kleczkowska ◽  
Katarzyna Kaczyńska

We examined anti-inflammatory potency of hybrid peptide-PK20, composed of neurotensin (NT) and endomorphin-2 (EM-2) pharmacophores in a murine model of non-atopic asthma induced by skin sensitization with 2,4-dinitrofluorobenzene and intratracheal challenge of cognate hapten. Mice received intraperitoneally PK20, equimolar mixture of its structural elements (MIX), dexamethasone (DEX), or NaCl. Twenty-four hours following hapten challenge, the measurements of airway responsiveness to methacholine were taken. Bronchoalveolar lavage (BALF) and lungs were collected for further analyses. Treatment with PK20, similarly to dexamethasone, reduced infiltration of inflammatory cells, concentration of mouse mast cell protease, IL-1β, IL-12p40, IL-17A, CXCL1, RANTES in lungs and IL-1α, IL-2, IL-13, and TNF-α in BALF. Simple mixture of NT and EM-2 moieties was less potent. PK20, DEX, and MIX significantly decreased malondialdehyde level and secretory phospholipase 2 activity in lungs. Intensity of NF-κB immunoreactivity was diminished only after PK20 and DEX treatments. Neither PK20 nor mixture of its pharmacophores were as effective as DEX in alleviating airway hyperresponsiveness. PK20 effectively inhibited hapten-induced inflammation and mediator and signaling pathways in a manner seen with dexamethasone. Improved anti-inflammatory potency of the hybrid over the mixture of its moieties shows its preponderance and might pose a promising tool in modulating inflammation in asthma.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaobin Fang ◽  
Ren Liao ◽  
Yingyan Yu ◽  
Jingyi Li ◽  
Zaipei Guo ◽  
...  

Background. Thrombin could elicit degranulation of mast cells involved in numerous physiologic and pathologic processes; however, the detailed scrutiny of this procedure and further research of possible cell signaling pathways are lacking. Methods. P815 mouse mast cells were exposed to various concentrations of thrombin for 16 h. Expression of protease-activated receptor (PAR)1, PAR2, PAR3, and PAR4 mRNA in P815 was analyzed by quantitative real-time PCR (qRT-PCR) and the fittest concentration of thrombin was decided. Then, secretions of mediators from P815 stimulated by thrombin 0.2 U/ml were determined using enzyme-linked immunosorbent assay (ELISA) and Luminex liquichip; the possible cell signaling pathways were measured by immunoblotting. Furthermore, inhibition of thrombin inhibitor (hirudin), PAR1 inhibitor (SCH79797), and MAPK inhibitors (SB203580, PD98059, and SP600125) on the mediator section was evaluated by ELISA and Luminex liquichip. Results. Thrombin 0.2 U/ml induced the elevated expression of PAR1, PAR2, PAR3, and PAR4, as well as the increasing level of phospho-IκBα, phospho-SAPK/JNK MAPK, phospho-P38 MAPK (Thr180/Tyr182), and phospho-ERK1/2 MAPK (p44/42) in P815. Secretion of vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), interleukin- (IL-) 2, IL-6, chemokine ligand- (CCL-) 2, chemokine (C-X-C motif) ligand- (CXCL-) 1, and CXCL-5 from P815 increased apparently; this effect could be diminished by hirudin, whereas SCH79797 and MAPK inhibitors (SB203580, PD98059, and SP600125) diminish the secretions with weaker effect. Conclusion. We found the expression of PAR mRNA in P815, activation of signaling pathways of nuclear factor-kappaB (NF-κB), and mitogen-activated protein kinases (MAPKs) including C-Jun NH2-terminal kinase (JNK), P38, and extracellular signal-regulated kinase 1/2 (ERK1/2), and the release of multiple inflammatory mediators stimulated by thrombin, as well as the inhibition of the inflammatory releases by hirudin, SCH79797, and MAPK inhibitors including SB203580, PD98059, and SP600125.


2019 ◽  
Vol 20 (20) ◽  
pp. 5147 ◽  
Author(s):  
Zhirong Fu ◽  
Srinivas Akula ◽  
Michael Thorpe ◽  
Lars Hellman

Mast cells (MC) are resident tissue cells found primarily at the interphase between tissues and the environment. These evolutionary old cells store large amounts of proteases within cytoplasmic granules, and one of the most abundant of these proteases is tryptase. To look deeper into the question of their in vivo targets, we have analyzed the activity of the human MC tryptase on 69 different human cytokines and chemokines, and the activity of the mouse tryptase (mMCP-6) on 56 mouse cytokines and chemokines. These enzymes were found to be remarkably restrictive in their cleavage of these potential targets. Only five were efficiently cleaved by the human tryptase: TSLP, IL-21, MCP3, MIP-3b, and eotaxin. This strict specificity indicates a regulatory function of these proteases and not primarily as unspecific degrading enzymes. We recently showed that the human MC chymase also had a relatively strict specificity, indicating that both of these proteases have regulatory functions. One of the most interesting regulatory functions may involve controlling excessive TH2-mediated inflammation by cleaving several of the most important TH2-promoting inflammatory cytokines, including IL-18, IL-33, TSLP, IL-15, and IL-21, indicating a potent negative feedback loop on TH2 immunity.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2463 ◽  
Author(s):  
Anna S. Ondracek ◽  
Denise Heiden ◽  
Gertie J. Oostingh ◽  
Elisabeth Fuerst ◽  
Judit Fazekas-Singer ◽  
...  

Food proteins may get nitrated by various exogenous or endogenous mechanisms. As individuals might get recurrently exposed to nitrated proteins via daily diet, we aimed to investigate the effect of repeatedly ingested nitrated food proteins on the subsequent immune response in non-allergic and allergic mice using the milk allergen beta-lactoglobulin (BLG) as model food protein in a mouse model. Evaluating the presence of nitrated proteins in food, we could detect 3-nitrotyrosine (3-NT) in extracts of different foods and in stomach content extracts of non-allergic mice under physiological conditions. Chemically nitrated BLG (BLGn) exhibited enhanced susceptibility to degradation in simulated gastric fluid experiments compared to untreated BLG (BLGu). Gavage of BLGn to non-allergic animals increased interferon-γ and interleukin-10 release of stimulated spleen cells and led to the formation of BLG-specific serum IgA. Allergic mice receiving three oral gavages of BLGn had higher levels of mouse mast cell protease-1 (mMCP-1) compared to allergic mice receiving BLGu. Regardless of the preceding immune status, non-allergic or allergic, repeatedly ingested nitrated food proteins seem to considerably influence the subsequent immune response.


Sign in / Sign up

Export Citation Format

Share Document