scholarly journals Structural and Biochemical Characterization of the Salicylyl-acyltranferase SsfX3 from a Tetracycline Biosynthetic Pathway

2011 ◽  
Vol 286 (48) ◽  
pp. 41539-41551 ◽  
Author(s):  
Lauren B. Pickens ◽  
Michael R. Sawaya ◽  
Huma Rasool ◽  
Inna Pashkov ◽  
Todd O. Yeates ◽  
...  
2012 ◽  
Vol 194 (8) ◽  
pp. 1868-1874 ◽  
Author(s):  
Q. Wang ◽  
Y. Xu ◽  
A. V. Perepelov ◽  
Y. A. Knirel ◽  
P. R. Reeves ◽  
...  

2020 ◽  
Author(s):  
Mengbin Chen ◽  
Chun-Ting Liu ◽  
Yi Tang

Pyridoxal phosphate (PLP)-dependent enzymes can catalyze various transformations of amino acids at alpha, beta, and gamma positions. These versatile enzymes are prominently involved in the biosynthesis of nonproteinogenic amino acids as building blocks of natural products, and are attractive biocatalysts. Here, we report the discovery of a two-step enzymatic synthesis of (2<i>S, </i>6<i>S</i>)-6-methyl pipecolate <b>1</b>, from the biosynthetic pathway of indole alkaloid citrinadin. The key enzyme CndF is PLP-dependent and catalyzes synthesis of (<i>S</i>)-2-amino-6-oxoheptanoate <b>3</b> that is in equilibrium with the cyclic Schiff base. The second enzyme CndE is a stereoselective imine reductase that gives <b>1</b>. Biochemical characterization of CndF showed this enzyme performs gamma-elimination of <i>O</i>-acetyl L-homoserine to generate the vinylglycine ketimine, which is subjected to nucleophilic attack by acetoacetate to form the new C<sub>gamma</sub>-C<sub>delta</sub> bond in <b>3 </b>and complete the gamma-substitution reaction. CndF displays substrate promiscuity towards different beta-keto carboxylate and esters. Using a recombinant <i>Aspergillus </i>strain expressing CndF and CndE, feeding various alkyl-beta-keto esters led to the biosynthesis of 6-substituted L-pipecolates. The discovery of CndF expands the repertoire of reactions that can be catalyzed by PLP-dependent enzymes.


1978 ◽  
Vol 176 (2) ◽  
pp. 553-561 ◽  
Author(s):  
G Giordano ◽  
L Grillet ◽  
R Rosset ◽  
J H Dou ◽  
E Azoulay ◽  
...  

Escherichia coli can normally grow aerobically in the presence of chlorate; however, mutants can be isolated that can no longer grow under these conditions. We present here the biochemical characterization of one such mutant and show that the primary genetic lesion occurs in the ubiquinone-8-biosynthetic pathway. As a consequence of this, under aerobic growth conditions the mutant is apparently unable to synthesize formate dehydrogenase, but can synthesize a Benzyl Viologen-dependent nitrate reductase activity. The nature of this activity is discussed.


2005 ◽  
Vol 127 (11) ◽  
pp. 3682-3683 ◽  
Author(s):  
Kristin E. Burns ◽  
Yun Xiang ◽  
Cynthia L. Kinsland ◽  
Fred W. McLafferty ◽  
Tadhg P. Begley

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 61 ◽  
Author(s):  
Yaya Wang ◽  
Zixin Deng ◽  
Xudong Qu

Fluorination has been widely used in chemical synthesis, but is rare in nature. The only known biological fluorination scope is represented by theflpathway fromStreptomyces cattleyathat produces fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Here we report the identification of a novel pathway for FAc and 4-FT biosynthesis from the actinomycetoma-causing pathogenNocardia brasiliensisATCC 700358. The new pathway shares overall conservation with theflpathway inS. cattleya. Biochemical characterization of the conserved domains revealed a novel fluorinase NobA that can biosynthesize 5’-fluoro-5’-deoxyadenosine (5’-FDA) from inorganic fluoride andS-adenosyl-l-methionine (SAM). The NobA shows similar halide specificity and characteristics to the fluorination enzyme FlA of theflpathway. Kinetic parameters for fluoride (Km4153 μM,kcat0.073 min-1) and SAM (Km416 μM,kcat0.139 min-1) have been determined, revealing that NobA is slightly (2.3 fold) slower than FlA. Upon sequence comparison, we finally identified a distinct loop region in the fluorinases that probably accounts for the disparity of fluorination activity.


Sign in / Sign up

Export Citation Format

Share Document