scholarly journals Alternating Access to the Transmembrane Domain of the ATP-binding Cassette Protein Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7)

2012 ◽  
Vol 287 (13) ◽  
pp. 10156-10165 ◽  
Author(s):  
Wuyang Wang ◽  
Paul Linsdell
2002 ◽  
Vol 282 (5) ◽  
pp. C1170-C1180 ◽  
Author(s):  
Wenlan Wang ◽  
Zhaoping He ◽  
Thomas J. O'Shaughnessy ◽  
John Rux ◽  
William W. Reenstra

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a chloride channel whose activity requires protein kinase A-dependent phosphorylation of an intracellular regulatory domain (R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs). To identify potential sites of domain-domain interaction within CFTR, we expressed, purified, and refolded histidine (His)- and glutathione- S-transferase (GST)-tagged cytoplasmic domains of CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated by measuring tryptophan fluorescence quenching. Tryptic dig estion of in vitro phosphorylated his-NBD1-R and in situ phosphorylated CFTR generated the same phosphopeptides. An interaction between NBD1-R and NBD2 was assayed by tryptophan fluorescence quenching. Binding among all pairwise combinations of R-domain, NBD1, and NBD2 was demonstrated with an overlay assay. To identify specific sites of interaction between domains of CFTR, an overlay assay was used to probe an overlapping peptide library spanning all intracellular regions of CFTR with his-NBD1, his-NBD2, and GST-R-domain. By mapping peptides from NBD1 and NBD2 that bound to other intracellular domains onto crystal structures for HisP, MalK, and Rad50, probable sites of interaction between NBD1 and NBD2 were identified. Our data support a model where NBDs form dimers with the ATP-binding sites at the domain-domain interface.


2006 ◽  
Vol 282 (7) ◽  
pp. 4533-4544 ◽  
Author(s):  
Wei Wang ◽  
Karen Bernard ◽  
Ge Li ◽  
Kevin L. Kirk

Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.


Sign in / Sign up

Export Citation Format

Share Document