alternating access
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 31)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Holger Flechsig

Atomic force microscopy (AFM) of proteins can detect only changes within the scanned molecular surface, missing all motions in other regions and thus information about functionally relevant conformational couplings. We show that simulation AFM can overcome this drawback by reconstruction of 3D molecular structures from topographic AFM images. A proof of principle demonstration is provided for an in-silico AFM experiment visualizing the conformational dynamics of a membrane transporter. The application shows that the alternating access mechanism underlying its operation can be retrieved from only AFM imaging of one membrane side. Simulation AFM is implemented in the freely available BioAFMviewer software platform, providing the convenient applicability to better understand experimental AFM observations.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009454
Author(s):  
Jakub Jurasz ◽  
Maciej Bagiński ◽  
Jacek Czub ◽  
Miłosz Wieczór

The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2021 ◽  
Author(s):  
Wenxin Hu ◽  
Chance Parkinson ◽  
Hongjin Zheng

Recently, several ATP-binding cassette (ABC) importers have been found to adopt the typical fold of type IV ABC exporters. Presumably, these importers would function under the transport scheme of "alternating access" like those exporters: cycling through conformations of inward-open, occluded, and outward-open. Understanding how the exporter-like importers move substrates in the opposite direction requires structural studies in all the major conformations. To shed light on that, here we report the structure of yersiniabactin importer YbtPQ from uropathogenic Escherichia coli in the occluded conformation trapped by ADP-vanadate (ADP.Vi) at 3.1 angstrom resolution determined by cryo electron microscopy. The structure shows unusual local rearrangements in multiple helices and loops in its transmembrane domains (TMDs). In addition, the dimerization of nucleotide-binding domains (NBDs) promoted by the vanadate trapping is highlighted by the "screwdriver" action happening at one of the two hinge points. These structural observations are rare and thus provide valuable information to understand the structural plasticity of the exporter-like ABC importers.


2021 ◽  
Author(s):  
Jakub Jurasz ◽  
Jacek Czub ◽  
Maciej Bagiński ◽  
Miłosz Wieczór

AbstractThe current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes.


2021 ◽  
Author(s):  
Heather J. Young ◽  
Matthew Chan ◽  
Balaji Selvam ◽  
Steven K. Szymanski ◽  
Diwakar Shukla ◽  
...  

AbstractThe serotonin transporter, SERT, catalyzes serotonin reuptake at the synapse to terminate neurotransmission via an alternating access mechanism, and SERT inhibitors are the most widely prescribed antidepressants. Here, deep mutagenesis is used to determine the effects of nearly all amino acid substitutions on human SERT surface expression and transport of the fluorescent substrate analogue APP+, identifying many mutations that enhance APP+ import. Comprehensive simulations of the entire ion-coupled import process reveal that while binding of the native substrate, serotonin, reduces free energy barriers between conformational states to promote SERT dynamics, the conformational free energy landscape in the presence of APP+ instead resembles Na+ bound-SERT, with a higher free energy barrier for transitioning to an inward-facing state. The deep mutational scan for SERT-catalyzed import of APP+ finds mutations that promote the necessary conformational changes that would otherwise be facilitated by the native substrate. Indeed, hundreds of gain-of-function mutations for APP+ import are found along the permeation pathway, most notably mutations that favor opening of a solvent-exposed intracellular vestibule. The mutagenesis data support the simulated mechanism in which the neurotransmitter and a symported sodium share a common cytosolic exit pathway to achieve coupling. Furthermore, the mutational landscape for SERT surface trafficking, which likely filters out misfolded sequences, reveals that residues along the permeation pathway are mutationally tolerant, providing plausible evolutionary pathways for changes in transporter properties while maintaining folded structure.


2021 ◽  
pp. 166959
Author(s):  
Derek P. Claxton ◽  
Kevin L. Jagessar ◽  
Hassane S. Mchaourab

2021 ◽  
Vol 120 (3) ◽  
pp. 212a
Author(s):  
Karan Kapoor ◽  
Sepehr Dehghanighahnaviyeh ◽  
Emad Tajkhorshid

Sign in / Sign up

Export Citation Format

Share Document