scholarly journals Architectural Arrangement of the Small Nuclear RNA (snRNA)-activating Protein Complex 190 Subunit (SNAP190) on U1 snRNA Gene Promoter DNA

2012 ◽  
Vol 287 (47) ◽  
pp. 39369-39379 ◽  
Author(s):  
Matthew T. Doherty ◽  
Yoon Soon Kang ◽  
Cheryn Lee ◽  
William E. Stumph
1993 ◽  
Vol 13 (9) ◽  
pp. 5613-5619
Author(s):  
Y Takahashi ◽  
S Urushiyama ◽  
T Tani ◽  
Y Ohshima

Splicing an mRNA precursor requires multiple factors involving five small nuclear RNA (snRNA) species called U1, U2, U4, U5, and U6. The presence of mRNA-type introns in the U6 snRNA genes of some yeasts led to the hypothesis that U6 snRNA may play a catalytic role in pre-mRNA splicing and that the U6 introns occurred through reverse splicing of an intron from an mRNA precursor into a catalytic site of U6 snRNA. We characterized the U2 snRNA gene of the yeast Rhodotorula hasegawae, which has four mRNA-type introns in the U6 snRNA gene, and found an mRNA-type intron of 60 bp. The intron of the U2 snRNA gene is present in the highly conserved region immediately downstream of the branch site recognition domain. Interestingly, we found that this region can form a novel base pairing with U6 snRNA. We discuss the possible implications of these findings for the mechanisms of intron acquisition and for the role of U2 snRNA in pre-mRNA splicing.


Nature ◽  
10.1038/29234 ◽  
1998 ◽  
Vol 394 (6694) ◽  
pp. 645-650 ◽  
Author(s):  
Stephen R. Price ◽  
Philip R. Evans ◽  
Kiyoshi Nagai

Cell ◽  
1983 ◽  
Vol 33 (2) ◽  
pp. 509-518 ◽  
Author(s):  
Stephen M. Mount ◽  
Ingvar Pettersson ◽  
Monique Hinterberger ◽  
Aavo Karmas ◽  
Joan A. Steitz

1993 ◽  
Vol 13 (9) ◽  
pp. 5613-5619 ◽  
Author(s):  
Y Takahashi ◽  
S Urushiyama ◽  
T Tani ◽  
Y Ohshima

Splicing an mRNA precursor requires multiple factors involving five small nuclear RNA (snRNA) species called U1, U2, U4, U5, and U6. The presence of mRNA-type introns in the U6 snRNA genes of some yeasts led to the hypothesis that U6 snRNA may play a catalytic role in pre-mRNA splicing and that the U6 introns occurred through reverse splicing of an intron from an mRNA precursor into a catalytic site of U6 snRNA. We characterized the U2 snRNA gene of the yeast Rhodotorula hasegawae, which has four mRNA-type introns in the U6 snRNA gene, and found an mRNA-type intron of 60 bp. The intron of the U2 snRNA gene is present in the highly conserved region immediately downstream of the branch site recognition domain. Interestingly, we found that this region can form a novel base pairing with U6 snRNA. We discuss the possible implications of these findings for the mechanisms of intron acquisition and for the role of U2 snRNA in pre-mRNA splicing.


1989 ◽  
Vol 9 (10) ◽  
pp. 4179-4186 ◽  
Author(s):  
C S Surowy ◽  
V L van Santen ◽  
S M Scheib-Wixted ◽  
R A Spritz

We have studied the interaction of two of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins, U1-70K and U1-A, with U1 small nuclear RNA (snRNA). The U1-70K protein is a U1-specific RNA-binding protein. Deletion and mutation analyses of a beta-galactosidase/U1-70K partial fusion protein indicated that the central portion of the protein, including the RNP sequence domain, is both necessary and sufficient for specific U1 snRNA binding in vitro. The highly conserved eight-amino-acid RNP consensus sequence was found to be essential for binding. Deletion and mutation analyses of U1 snRNA showed that both the U1-70K fusion protein and the native HeLa U1-70K protein bound directly to loop I of U1 snRNA. Binding was sequence specific, requiring 8 of the 10 bases in the loop. The U1-A snRNP protein also interacted specifically with U1 snRNA, principally with stem-loop II.


1998 ◽  
Vol 18 (12) ◽  
pp. 7510-7520 ◽  
Author(s):  
Laura O’Mullane ◽  
Ian C. Eperon

ABSTRACT Efficient splicing of the 5′-most intron of pre-mRNA requires a 5′ m7G(5′)ppp(5′)N cap, which has been implicated in U1 snRNP binding to 5′ splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5′ cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5′ splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5′ splice site and not with any loss of U1 snRNP binding.


Sign in / Sign up

Export Citation Format

Share Document